Linux ip-172-26-2-223 5.4.0-1018-aws #18-Ubuntu SMP Wed Jun 24 01:15:00 UTC 2020 x86_64
Apache
: 172.26.2.223 | : 3.17.156.160
Cant Read [ /etc/named.conf ]
8.1.13
www
www.github.com/MadExploits
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
UNLOCK SHELL
HASH IDENTIFIER
CPANEL RESET
CREATE WP USER
BLACK DEFEND!
README
+ Create Folder
+ Create File
/
usr /
include /
c++ /
9 /
tr1 /
[ HOME SHELL ]
Name
Size
Permission
Action
array
6.82
KB
-rw-r--r--
bessel_function.tcc
22.4
KB
-rw-r--r--
beta_function.tcc
5.85
KB
-rw-r--r--
ccomplex
1.23
KB
-rw-r--r--
cctype
1.38
KB
-rw-r--r--
cfenv
1.96
KB
-rw-r--r--
cfloat
1.35
KB
-rw-r--r--
cinttypes
2.2
KB
-rw-r--r--
climits
1.42
KB
-rw-r--r--
cmath
42.78
KB
-rw-r--r--
complex
12.09
KB
-rw-r--r--
complex.h
1.23
KB
-rw-r--r--
cstdarg
1.22
KB
-rw-r--r--
cstdbool
1.31
KB
-rw-r--r--
cstdint
2.56
KB
-rw-r--r--
cstdio
1.45
KB
-rw-r--r--
cstdlib
1.75
KB
-rw-r--r--
ctgmath
1.22
KB
-rw-r--r--
ctime
1.21
KB
-rw-r--r--
ctype.h
1.18
KB
-rw-r--r--
cwchar
1.68
KB
-rw-r--r--
cwctype
1.42
KB
-rw-r--r--
ell_integral.tcc
27.07
KB
-rw-r--r--
exp_integral.tcc
15.64
KB
-rw-r--r--
fenv.h
1.18
KB
-rw-r--r--
float.h
1.18
KB
-rw-r--r--
functional
68.89
KB
-rw-r--r--
functional_hash.h
5.9
KB
-rw-r--r--
gamma.tcc
14.34
KB
-rw-r--r--
hashtable.h
40.58
KB
-rw-r--r--
hashtable_policy.h
24.5
KB
-rw-r--r--
hypergeometric.tcc
27.41
KB
-rw-r--r--
inttypes.h
1.24
KB
-rw-r--r--
legendre_function.tcc
10.4
KB
-rw-r--r--
limits.h
1.19
KB
-rw-r--r--
math.h
4.45
KB
-rw-r--r--
memory
1.75
KB
-rw-r--r--
modified_bessel_func.tcc
15.94
KB
-rw-r--r--
poly_hermite.tcc
3.83
KB
-rw-r--r--
poly_laguerre.tcc
11.4
KB
-rw-r--r--
random
1.55
KB
-rw-r--r--
random.h
71.38
KB
-rw-r--r--
random.tcc
52.66
KB
-rw-r--r--
regex
90.74
KB
-rw-r--r--
riemann_zeta.tcc
13.74
KB
-rw-r--r--
shared_ptr.h
31.84
KB
-rw-r--r--
special_function_util.h
4.94
KB
-rw-r--r--
stdarg.h
1.19
KB
-rw-r--r--
stdbool.h
1.19
KB
-rw-r--r--
stdint.h
1.19
KB
-rw-r--r--
stdio.h
1.18
KB
-rw-r--r--
stdlib.h
1.45
KB
-rw-r--r--
tgmath.h
1.23
KB
-rw-r--r--
tuple
11.83
KB
-rw-r--r--
type_traits
18.57
KB
-rw-r--r--
unordered_map
1.54
KB
-rw-r--r--
unordered_map.h
9.98
KB
-rw-r--r--
unordered_set
1.54
KB
-rw-r--r--
unordered_set.h
9.32
KB
-rw-r--r--
utility
3.15
KB
-rw-r--r--
wchar.h
1.22
KB
-rw-r--r--
wctype.h
1.23
KB
-rw-r--r--
Delete
Unzip
Zip
${this.title}
Close
Code Editor : hypergeometric.tcc
// Special functions -*- C++ -*- // Copyright (C) 2006-2019 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>. /** @file tr1/hypergeometric.tcc * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{tr1/cmath} */ // // ISO C++ 14882 TR1: 5.2 Special functions // // Written by Edward Smith-Rowland based: // (1) Handbook of Mathematical Functions, // ed. Milton Abramowitz and Irene A. Stegun, // Dover Publications, // Section 6, pp. 555-566 // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl #ifndef _GLIBCXX_TR1_HYPERGEOMETRIC_TCC #define _GLIBCXX_TR1_HYPERGEOMETRIC_TCC 1 namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION #if _GLIBCXX_USE_STD_SPEC_FUNCS # define _GLIBCXX_MATH_NS ::std #elif defined(_GLIBCXX_TR1_CMATH) namespace tr1 { # define _GLIBCXX_MATH_NS ::std::tr1 #else # error do not include this header directly, use <cmath> or <tr1/cmath> #endif // [5.2] Special functions // Implementation-space details. namespace __detail { /** * @brief This routine returns the confluent hypergeometric function * by series expansion. * * @f[ * _1F_1(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)} * \sum_{n=0}^{\infty} * \frac{\Gamma(a+n)}{\Gamma(c+n)} * \frac{x^n}{n!} * @f] * * If a and b are integers and a < 0 and either b > 0 or b < a * then the series is a polynomial with a finite number of * terms. If b is an integer and b <= 0 the confluent * hypergeometric function is undefined. * * @param __a The "numerator" parameter. * @param __c The "denominator" parameter. * @param __x The argument of the confluent hypergeometric function. * @return The confluent hypergeometric function. */ template<typename _Tp> _Tp __conf_hyperg_series(_Tp __a, _Tp __c, _Tp __x) { const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); _Tp __term = _Tp(1); _Tp __Fac = _Tp(1); const unsigned int __max_iter = 100000; unsigned int __i; for (__i = 0; __i < __max_iter; ++__i) { __term *= (__a + _Tp(__i)) * __x / ((__c + _Tp(__i)) * _Tp(1 + __i)); if (std::abs(__term) < __eps) { break; } __Fac += __term; } if (__i == __max_iter) std::__throw_runtime_error(__N("Series failed to converge " "in __conf_hyperg_series.")); return __Fac; } /** * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ * by an iterative procedure described in * Luke, Algorithms for the Computation of Mathematical Functions. * * Like the case of the 2F1 rational approximations, these are * probably guaranteed to converge for x < 0, barring gross * numerical instability in the pre-asymptotic regime. */ template<typename _Tp> _Tp __conf_hyperg_luke(_Tp __a, _Tp __c, _Tp __xin) { const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L)); const int __nmax = 20000; const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); const _Tp __x = -__xin; const _Tp __x3 = __x * __x * __x; const _Tp __t0 = __a / __c; const _Tp __t1 = (__a + _Tp(1)) / (_Tp(2) * __c); const _Tp __t2 = (__a + _Tp(2)) / (_Tp(2) * (__c + _Tp(1))); _Tp __F = _Tp(1); _Tp __prec; _Tp __Bnm3 = _Tp(1); _Tp __Bnm2 = _Tp(1) + __t1 * __x; _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x); _Tp __Anm3 = _Tp(1); _Tp __Anm2 = __Bnm2 - __t0 * __x; _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x; int __n = 3; while(1) { _Tp __npam1 = _Tp(__n - 1) + __a; _Tp __npcm1 = _Tp(__n - 1) + __c; _Tp __npam2 = _Tp(__n - 2) + __a; _Tp __npcm2 = _Tp(__n - 2) + __c; _Tp __tnm1 = _Tp(2 * __n - 1); _Tp __tnm3 = _Tp(2 * __n - 3); _Tp __tnm5 = _Tp(2 * __n - 5); _Tp __F1 = (_Tp(__n - 2) - __a) / (_Tp(2) * __tnm3 * __npcm1); _Tp __F2 = (_Tp(__n) + __a) * __npam1 / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1); _Tp __F3 = -__npam2 * __npam1 * (_Tp(__n - 2) - __a) / (_Tp(8) * __tnm3 * __tnm3 * __tnm5 * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1); _Tp __E = -__npam1 * (_Tp(__n - 1) - __c) / (_Tp(2) * __tnm3 * __npcm2 * __npcm1); _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1 + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3; _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1 + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3; _Tp __r = __An / __Bn; __prec = std::abs((__F - __r) / __F); __F = __r; if (__prec < __eps || __n > __nmax) break; if (std::abs(__An) > __big || std::abs(__Bn) > __big) { __An /= __big; __Bn /= __big; __Anm1 /= __big; __Bnm1 /= __big; __Anm2 /= __big; __Bnm2 /= __big; __Anm3 /= __big; __Bnm3 /= __big; } else if (std::abs(__An) < _Tp(1) / __big || std::abs(__Bn) < _Tp(1) / __big) { __An *= __big; __Bn *= __big; __Anm1 *= __big; __Bnm1 *= __big; __Anm2 *= __big; __Bnm2 *= __big; __Anm3 *= __big; __Bnm3 *= __big; } ++__n; __Bnm3 = __Bnm2; __Bnm2 = __Bnm1; __Bnm1 = __Bn; __Anm3 = __Anm2; __Anm2 = __Anm1; __Anm1 = __An; } if (__n >= __nmax) std::__throw_runtime_error(__N("Iteration failed to converge " "in __conf_hyperg_luke.")); return __F; } /** * @brief Return the confluent hypogeometric function * @f$ _1F_1(a;c;x) @f$. * * @todo Handle b == nonpositive integer blowup - return NaN. * * @param __a The @a numerator parameter. * @param __c The @a denominator parameter. * @param __x The argument of the confluent hypergeometric function. * @return The confluent hypergeometric function. */ template<typename _Tp> _Tp __conf_hyperg(_Tp __a, _Tp __c, _Tp __x) { #if _GLIBCXX_USE_C99_MATH_TR1 const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c); #else const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L)); #endif if (__isnan(__a) || __isnan(__c) || __isnan(__x)) return std::numeric_limits<_Tp>::quiet_NaN(); else if (__c_nint == __c && __c_nint <= 0) return std::numeric_limits<_Tp>::infinity(); else if (__a == _Tp(0)) return _Tp(1); else if (__c == __a) return std::exp(__x); else if (__x < _Tp(0)) return __conf_hyperg_luke(__a, __c, __x); else return __conf_hyperg_series(__a, __c, __x); } /** * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ * by series expansion. * * The hypogeometric function is defined by * @f[ * _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} * \sum_{n=0}^{\infty} * \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} * \frac{x^n}{n!} * @f] * * This works and it's pretty fast. * * @param __a The first @a numerator parameter. * @param __a The second @a numerator parameter. * @param __c The @a denominator parameter. * @param __x The argument of the confluent hypergeometric function. * @return The confluent hypergeometric function. */ template<typename _Tp> _Tp __hyperg_series(_Tp __a, _Tp __b, _Tp __c, _Tp __x) { const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); _Tp __term = _Tp(1); _Tp __Fabc = _Tp(1); const unsigned int __max_iter = 100000; unsigned int __i; for (__i = 0; __i < __max_iter; ++__i) { __term *= (__a + _Tp(__i)) * (__b + _Tp(__i)) * __x / ((__c + _Tp(__i)) * _Tp(1 + __i)); if (std::abs(__term) < __eps) { break; } __Fabc += __term; } if (__i == __max_iter) std::__throw_runtime_error(__N("Series failed to converge " "in __hyperg_series.")); return __Fabc; } /** * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ * by an iterative procedure described in * Luke, Algorithms for the Computation of Mathematical Functions. */ template<typename _Tp> _Tp __hyperg_luke(_Tp __a, _Tp __b, _Tp __c, _Tp __xin) { const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L)); const int __nmax = 20000; const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); const _Tp __x = -__xin; const _Tp __x3 = __x * __x * __x; const _Tp __t0 = __a * __b / __c; const _Tp __t1 = (__a + _Tp(1)) * (__b + _Tp(1)) / (_Tp(2) * __c); const _Tp __t2 = (__a + _Tp(2)) * (__b + _Tp(2)) / (_Tp(2) * (__c + _Tp(1))); _Tp __F = _Tp(1); _Tp __Bnm3 = _Tp(1); _Tp __Bnm2 = _Tp(1) + __t1 * __x; _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x); _Tp __Anm3 = _Tp(1); _Tp __Anm2 = __Bnm2 - __t0 * __x; _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x; int __n = 3; while (1) { const _Tp __npam1 = _Tp(__n - 1) + __a; const _Tp __npbm1 = _Tp(__n - 1) + __b; const _Tp __npcm1 = _Tp(__n - 1) + __c; const _Tp __npam2 = _Tp(__n - 2) + __a; const _Tp __npbm2 = _Tp(__n - 2) + __b; const _Tp __npcm2 = _Tp(__n - 2) + __c; const _Tp __tnm1 = _Tp(2 * __n - 1); const _Tp __tnm3 = _Tp(2 * __n - 3); const _Tp __tnm5 = _Tp(2 * __n - 5); const _Tp __n2 = __n * __n; const _Tp __F1 = (_Tp(3) * __n2 + (__a + __b - _Tp(6)) * __n + _Tp(2) - __a * __b - _Tp(2) * (__a + __b)) / (_Tp(2) * __tnm3 * __npcm1); const _Tp __F2 = -(_Tp(3) * __n2 - (__a + __b + _Tp(6)) * __n + _Tp(2) - __a * __b) * __npam1 * __npbm1 / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1); const _Tp __F3 = (__npam2 * __npam1 * __npbm2 * __npbm1 * (_Tp(__n - 2) - __a) * (_Tp(__n - 2) - __b)) / (_Tp(8) * __tnm3 * __tnm3 * __tnm5 * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1); const _Tp __E = -__npam1 * __npbm1 * (_Tp(__n - 1) - __c) / (_Tp(2) * __tnm3 * __npcm2 * __npcm1); _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1 + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3; _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1 + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3; const _Tp __r = __An / __Bn; const _Tp __prec = std::abs((__F - __r) / __F); __F = __r; if (__prec < __eps || __n > __nmax) break; if (std::abs(__An) > __big || std::abs(__Bn) > __big) { __An /= __big; __Bn /= __big; __Anm1 /= __big; __Bnm1 /= __big; __Anm2 /= __big; __Bnm2 /= __big; __Anm3 /= __big; __Bnm3 /= __big; } else if (std::abs(__An) < _Tp(1) / __big || std::abs(__Bn) < _Tp(1) / __big) { __An *= __big; __Bn *= __big; __Anm1 *= __big; __Bnm1 *= __big; __Anm2 *= __big; __Bnm2 *= __big; __Anm3 *= __big; __Bnm3 *= __big; } ++__n; __Bnm3 = __Bnm2; __Bnm2 = __Bnm1; __Bnm1 = __Bn; __Anm3 = __Anm2; __Anm2 = __Anm1; __Anm1 = __An; } if (__n >= __nmax) std::__throw_runtime_error(__N("Iteration failed to converge " "in __hyperg_luke.")); return __F; } /** * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ * by the reflection formulae in Abramowitz & Stegun formula * 15.3.6 for d = c - a - b not integral and formula 15.3.11 for * d = c - a - b integral. This assumes a, b, c != negative * integer. * * The hypogeometric function is defined by * @f[ * _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} * \sum_{n=0}^{\infty} * \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} * \frac{x^n}{n!} * @f] * * The reflection formula for nonintegral @f$ d = c - a - b @f$ is: * @f[ * _2F_1(a,b;c;x) = \frac{\Gamma(c)\Gamma(d)}{\Gamma(c-a)\Gamma(c-b)} * _2F_1(a,b;1-d;1-x) * + \frac{\Gamma(c)\Gamma(-d)}{\Gamma(a)\Gamma(b)} * _2F_1(c-a,c-b;1+d;1-x) * @f] * * The reflection formula for integral @f$ m = c - a - b @f$ is: * @f[ * _2F_1(a,b;a+b+m;x) = \frac{\Gamma(m)\Gamma(a+b+m)}{\Gamma(a+m)\Gamma(b+m)} * \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k} * - * @f] */ template<typename _Tp> _Tp __hyperg_reflect(_Tp __a, _Tp __b, _Tp __c, _Tp __x) { const _Tp __d = __c - __a - __b; const int __intd = std::floor(__d + _Tp(0.5L)); const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); const _Tp __toler = _Tp(1000) * __eps; const _Tp __log_max = std::log(std::numeric_limits<_Tp>::max()); const bool __d_integer = (std::abs(__d - __intd) < __toler); if (__d_integer) { const _Tp __ln_omx = std::log(_Tp(1) - __x); const _Tp __ad = std::abs(__d); _Tp __F1, __F2; _Tp __d1, __d2; if (__d >= _Tp(0)) { __d1 = __d; __d2 = _Tp(0); } else { __d1 = _Tp(0); __d2 = __d; } const _Tp __lng_c = __log_gamma(__c); // Evaluate F1. if (__ad < __eps) { // d = c - a - b = 0. __F1 = _Tp(0); } else { bool __ok_d1 = true; _Tp __lng_ad, __lng_ad1, __lng_bd1; __try { __lng_ad = __log_gamma(__ad); __lng_ad1 = __log_gamma(__a + __d1); __lng_bd1 = __log_gamma(__b + __d1); } __catch(...) { __ok_d1 = false; } if (__ok_d1) { /* Gamma functions in the denominator are ok. * Proceed with evaluation. */ _Tp __sum1 = _Tp(1); _Tp __term = _Tp(1); _Tp __ln_pre1 = __lng_ad + __lng_c + __d2 * __ln_omx - __lng_ad1 - __lng_bd1; /* Do F1 sum. */ for (int __i = 1; __i < __ad; ++__i) { const int __j = __i - 1; __term *= (__a + __d2 + __j) * (__b + __d2 + __j) / (_Tp(1) + __d2 + __j) / __i * (_Tp(1) - __x); __sum1 += __term; } if (__ln_pre1 > __log_max) std::__throw_runtime_error(__N("Overflow of gamma functions" " in __hyperg_luke.")); else __F1 = std::exp(__ln_pre1) * __sum1; } else { // Gamma functions in the denominator were not ok. // So the F1 term is zero. __F1 = _Tp(0); } } // end F1 evaluation // Evaluate F2. bool __ok_d2 = true; _Tp __lng_ad2, __lng_bd2; __try { __lng_ad2 = __log_gamma(__a + __d2); __lng_bd2 = __log_gamma(__b + __d2); } __catch(...) { __ok_d2 = false; } if (__ok_d2) { // Gamma functions in the denominator are ok. // Proceed with evaluation. const int __maxiter = 2000; const _Tp __psi_1 = -__numeric_constants<_Tp>::__gamma_e(); const _Tp __psi_1pd = __psi(_Tp(1) + __ad); const _Tp __psi_apd1 = __psi(__a + __d1); const _Tp __psi_bpd1 = __psi(__b + __d1); _Tp __psi_term = __psi_1 + __psi_1pd - __psi_apd1 - __psi_bpd1 - __ln_omx; _Tp __fact = _Tp(1); _Tp __sum2 = __psi_term; _Tp __ln_pre2 = __lng_c + __d1 * __ln_omx - __lng_ad2 - __lng_bd2; // Do F2 sum. int __j; for (__j = 1; __j < __maxiter; ++__j) { // Values for psi functions use recurrence; // Abramowitz & Stegun 6.3.5 const _Tp __term1 = _Tp(1) / _Tp(__j) + _Tp(1) / (__ad + __j); const _Tp __term2 = _Tp(1) / (__a + __d1 + _Tp(__j - 1)) + _Tp(1) / (__b + __d1 + _Tp(__j - 1)); __psi_term += __term1 - __term2; __fact *= (__a + __d1 + _Tp(__j - 1)) * (__b + __d1 + _Tp(__j - 1)) / ((__ad + __j) * __j) * (_Tp(1) - __x); const _Tp __delta = __fact * __psi_term; __sum2 += __delta; if (std::abs(__delta) < __eps * std::abs(__sum2)) break; } if (__j == __maxiter) std::__throw_runtime_error(__N("Sum F2 failed to converge " "in __hyperg_reflect")); if (__sum2 == _Tp(0)) __F2 = _Tp(0); else __F2 = std::exp(__ln_pre2) * __sum2; } else { // Gamma functions in the denominator not ok. // So the F2 term is zero. __F2 = _Tp(0); } // end F2 evaluation const _Tp __sgn_2 = (__intd % 2 == 1 ? -_Tp(1) : _Tp(1)); const _Tp __F = __F1 + __sgn_2 * __F2; return __F; } else { // d = c - a - b not an integer. // These gamma functions appear in the denominator, so we // catch their harmless domain errors and set the terms to zero. bool __ok1 = true; _Tp __sgn_g1ca = _Tp(0), __ln_g1ca = _Tp(0); _Tp __sgn_g1cb = _Tp(0), __ln_g1cb = _Tp(0); __try { __sgn_g1ca = __log_gamma_sign(__c - __a); __ln_g1ca = __log_gamma(__c - __a); __sgn_g1cb = __log_gamma_sign(__c - __b); __ln_g1cb = __log_gamma(__c - __b); } __catch(...) { __ok1 = false; } bool __ok2 = true; _Tp __sgn_g2a = _Tp(0), __ln_g2a = _Tp(0); _Tp __sgn_g2b = _Tp(0), __ln_g2b = _Tp(0); __try { __sgn_g2a = __log_gamma_sign(__a); __ln_g2a = __log_gamma(__a); __sgn_g2b = __log_gamma_sign(__b); __ln_g2b = __log_gamma(__b); } __catch(...) { __ok2 = false; } const _Tp __sgn_gc = __log_gamma_sign(__c); const _Tp __ln_gc = __log_gamma(__c); const _Tp __sgn_gd = __log_gamma_sign(__d); const _Tp __ln_gd = __log_gamma(__d); const _Tp __sgn_gmd = __log_gamma_sign(-__d); const _Tp __ln_gmd = __log_gamma(-__d); const _Tp __sgn1 = __sgn_gc * __sgn_gd * __sgn_g1ca * __sgn_g1cb; const _Tp __sgn2 = __sgn_gc * __sgn_gmd * __sgn_g2a * __sgn_g2b; _Tp __pre1, __pre2; if (__ok1 && __ok2) { _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb; _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b + __d * std::log(_Tp(1) - __x); if (__ln_pre1 < __log_max && __ln_pre2 < __log_max) { __pre1 = std::exp(__ln_pre1); __pre2 = std::exp(__ln_pre2); __pre1 *= __sgn1; __pre2 *= __sgn2; } else { std::__throw_runtime_error(__N("Overflow of gamma functions " "in __hyperg_reflect")); } } else if (__ok1 && !__ok2) { _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb; if (__ln_pre1 < __log_max) { __pre1 = std::exp(__ln_pre1); __pre1 *= __sgn1; __pre2 = _Tp(0); } else { std::__throw_runtime_error(__N("Overflow of gamma functions " "in __hyperg_reflect")); } } else if (!__ok1 && __ok2) { _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b + __d * std::log(_Tp(1) - __x); if (__ln_pre2 < __log_max) { __pre1 = _Tp(0); __pre2 = std::exp(__ln_pre2); __pre2 *= __sgn2; } else { std::__throw_runtime_error(__N("Overflow of gamma functions " "in __hyperg_reflect")); } } else { __pre1 = _Tp(0); __pre2 = _Tp(0); std::__throw_runtime_error(__N("Underflow of gamma functions " "in __hyperg_reflect")); } const _Tp __F1 = __hyperg_series(__a, __b, _Tp(1) - __d, _Tp(1) - __x); const _Tp __F2 = __hyperg_series(__c - __a, __c - __b, _Tp(1) + __d, _Tp(1) - __x); const _Tp __F = __pre1 * __F1 + __pre2 * __F2; return __F; } } /** * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$. * * The hypogeometric function is defined by * @f[ * _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} * \sum_{n=0}^{\infty} * \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} * \frac{x^n}{n!} * @f] * * @param __a The first @a numerator parameter. * @param __a The second @a numerator parameter. * @param __c The @a denominator parameter. * @param __x The argument of the confluent hypergeometric function. * @return The confluent hypergeometric function. */ template<typename _Tp> _Tp __hyperg(_Tp __a, _Tp __b, _Tp __c, _Tp __x) { #if _GLIBCXX_USE_C99_MATH_TR1 const _Tp __a_nint = _GLIBCXX_MATH_NS::nearbyint(__a); const _Tp __b_nint = _GLIBCXX_MATH_NS::nearbyint(__b); const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c); #else const _Tp __a_nint = static_cast<int>(__a + _Tp(0.5L)); const _Tp __b_nint = static_cast<int>(__b + _Tp(0.5L)); const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L)); #endif const _Tp __toler = _Tp(1000) * std::numeric_limits<_Tp>::epsilon(); if (std::abs(__x) >= _Tp(1)) std::__throw_domain_error(__N("Argument outside unit circle " "in __hyperg.")); else if (__isnan(__a) || __isnan(__b) || __isnan(__c) || __isnan(__x)) return std::numeric_limits<_Tp>::quiet_NaN(); else if (__c_nint == __c && __c_nint <= _Tp(0)) return std::numeric_limits<_Tp>::infinity(); else if (std::abs(__c - __b) < __toler || std::abs(__c - __a) < __toler) return std::pow(_Tp(1) - __x, __c - __a - __b); else if (__a >= _Tp(0) && __b >= _Tp(0) && __c >= _Tp(0) && __x >= _Tp(0) && __x < _Tp(0.995L)) return __hyperg_series(__a, __b, __c, __x); else if (std::abs(__a) < _Tp(10) && std::abs(__b) < _Tp(10)) { // For integer a and b the hypergeometric function is a // finite polynomial. if (__a < _Tp(0) && std::abs(__a - __a_nint) < __toler) return __hyperg_series(__a_nint, __b, __c, __x); else if (__b < _Tp(0) && std::abs(__b - __b_nint) < __toler) return __hyperg_series(__a, __b_nint, __c, __x); else if (__x < -_Tp(0.25L)) return __hyperg_luke(__a, __b, __c, __x); else if (__x < _Tp(0.5L)) return __hyperg_series(__a, __b, __c, __x); else if (std::abs(__c) > _Tp(10)) return __hyperg_series(__a, __b, __c, __x); else return __hyperg_reflect(__a, __b, __c, __x); } else return __hyperg_luke(__a, __b, __c, __x); } } // namespace __detail #undef _GLIBCXX_MATH_NS #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) } // namespace tr1 #endif _GLIBCXX_END_NAMESPACE_VERSION } #endif // _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
Close