Linux ip-172-26-2-223 5.4.0-1018-aws #18-Ubuntu SMP Wed Jun 24 01:15:00 UTC 2020 x86_64
Apache
: 172.26.2.223 | : 3.15.158.134
Cant Read [ /etc/named.conf ]
8.1.13
www
www.github.com/MadExploits
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
UNLOCK SHELL
HASH IDENTIFIER
CPANEL RESET
CREATE WP USER
BLACK DEFEND!
README
+ Create Folder
+ Create File
/
usr /
include /
c++ /
9 /
tr1 /
[ HOME SHELL ]
Name
Size
Permission
Action
array
6.82
KB
-rw-r--r--
bessel_function.tcc
22.4
KB
-rw-r--r--
beta_function.tcc
5.85
KB
-rw-r--r--
ccomplex
1.23
KB
-rw-r--r--
cctype
1.38
KB
-rw-r--r--
cfenv
1.96
KB
-rw-r--r--
cfloat
1.35
KB
-rw-r--r--
cinttypes
2.2
KB
-rw-r--r--
climits
1.42
KB
-rw-r--r--
cmath
42.78
KB
-rw-r--r--
complex
12.09
KB
-rw-r--r--
complex.h
1.23
KB
-rw-r--r--
cstdarg
1.22
KB
-rw-r--r--
cstdbool
1.31
KB
-rw-r--r--
cstdint
2.56
KB
-rw-r--r--
cstdio
1.45
KB
-rw-r--r--
cstdlib
1.75
KB
-rw-r--r--
ctgmath
1.22
KB
-rw-r--r--
ctime
1.21
KB
-rw-r--r--
ctype.h
1.18
KB
-rw-r--r--
cwchar
1.68
KB
-rw-r--r--
cwctype
1.42
KB
-rw-r--r--
ell_integral.tcc
27.07
KB
-rw-r--r--
exp_integral.tcc
15.64
KB
-rw-r--r--
fenv.h
1.18
KB
-rw-r--r--
float.h
1.18
KB
-rw-r--r--
functional
68.89
KB
-rw-r--r--
functional_hash.h
5.9
KB
-rw-r--r--
gamma.tcc
14.34
KB
-rw-r--r--
hashtable.h
40.58
KB
-rw-r--r--
hashtable_policy.h
24.5
KB
-rw-r--r--
hypergeometric.tcc
27.41
KB
-rw-r--r--
inttypes.h
1.24
KB
-rw-r--r--
legendre_function.tcc
10.4
KB
-rw-r--r--
limits.h
1.19
KB
-rw-r--r--
math.h
4.45
KB
-rw-r--r--
memory
1.75
KB
-rw-r--r--
modified_bessel_func.tcc
15.94
KB
-rw-r--r--
poly_hermite.tcc
3.83
KB
-rw-r--r--
poly_laguerre.tcc
11.4
KB
-rw-r--r--
random
1.55
KB
-rw-r--r--
random.h
71.38
KB
-rw-r--r--
random.tcc
52.66
KB
-rw-r--r--
regex
90.74
KB
-rw-r--r--
riemann_zeta.tcc
13.74
KB
-rw-r--r--
shared_ptr.h
31.84
KB
-rw-r--r--
special_function_util.h
4.94
KB
-rw-r--r--
stdarg.h
1.19
KB
-rw-r--r--
stdbool.h
1.19
KB
-rw-r--r--
stdint.h
1.19
KB
-rw-r--r--
stdio.h
1.18
KB
-rw-r--r--
stdlib.h
1.45
KB
-rw-r--r--
tgmath.h
1.23
KB
-rw-r--r--
tuple
11.83
KB
-rw-r--r--
type_traits
18.57
KB
-rw-r--r--
unordered_map
1.54
KB
-rw-r--r--
unordered_map.h
9.98
KB
-rw-r--r--
unordered_set
1.54
KB
-rw-r--r--
unordered_set.h
9.32
KB
-rw-r--r--
utility
3.15
KB
-rw-r--r--
wchar.h
1.22
KB
-rw-r--r--
wctype.h
1.23
KB
-rw-r--r--
Delete
Unzip
Zip
${this.title}
Close
Code Editor : exp_integral.tcc
// Special functions -*- C++ -*- // Copyright (C) 2006-2019 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>. /** @file tr1/exp_integral.tcc * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{tr1/cmath} */ // // ISO C++ 14882 TR1: 5.2 Special functions // // Written by Edward Smith-Rowland based on: // // (1) Handbook of Mathematical Functions, // Ed. by Milton Abramowitz and Irene A. Stegun, // Dover Publications, New-York, Section 5, pp. 228-251. // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), // 2nd ed, pp. 222-225. // #ifndef _GLIBCXX_TR1_EXP_INTEGRAL_TCC #define _GLIBCXX_TR1_EXP_INTEGRAL_TCC 1 #include <tr1/special_function_util.h> namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION #if _GLIBCXX_USE_STD_SPEC_FUNCS #elif defined(_GLIBCXX_TR1_CMATH) namespace tr1 { #else # error do not include this header directly, use <cmath> or <tr1/cmath> #endif // [5.2] Special functions // Implementation-space details. namespace __detail { template<typename _Tp> _Tp __expint_E1(_Tp); /** * @brief Return the exponential integral @f$ E_1(x) @f$ * by series summation. This should be good * for @f$ x < 1 @f$. * * The exponential integral is given by * \f[ * E_1(x) = \int_{1}^{\infty} \frac{e^{-xt}}{t} dt * \f] * * @param __x The argument of the exponential integral function. * @return The exponential integral. */ template<typename _Tp> _Tp __expint_E1_series(_Tp __x) { const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); _Tp __term = _Tp(1); _Tp __esum = _Tp(0); _Tp __osum = _Tp(0); const unsigned int __max_iter = 1000; for (unsigned int __i = 1; __i < __max_iter; ++__i) { __term *= - __x / __i; if (std::abs(__term) < __eps) break; if (__term >= _Tp(0)) __esum += __term / __i; else __osum += __term / __i; } return - __esum - __osum - __numeric_constants<_Tp>::__gamma_e() - std::log(__x); } /** * @brief Return the exponential integral @f$ E_1(x) @f$ * by asymptotic expansion. * * The exponential integral is given by * \f[ * E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt * \f] * * @param __x The argument of the exponential integral function. * @return The exponential integral. */ template<typename _Tp> _Tp __expint_E1_asymp(_Tp __x) { _Tp __term = _Tp(1); _Tp __esum = _Tp(1); _Tp __osum = _Tp(0); const unsigned int __max_iter = 1000; for (unsigned int __i = 1; __i < __max_iter; ++__i) { _Tp __prev = __term; __term *= - __i / __x; if (std::abs(__term) > std::abs(__prev)) break; if (__term >= _Tp(0)) __esum += __term; else __osum += __term; } return std::exp(- __x) * (__esum + __osum) / __x; } /** * @brief Return the exponential integral @f$ E_n(x) @f$ * by series summation. * * The exponential integral is given by * \f[ * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt * \f] * * @param __n The order of the exponential integral function. * @param __x The argument of the exponential integral function. * @return The exponential integral. */ template<typename _Tp> _Tp __expint_En_series(unsigned int __n, _Tp __x) { const unsigned int __max_iter = 1000; const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); const int __nm1 = __n - 1; _Tp __ans = (__nm1 != 0 ? _Tp(1) / __nm1 : -std::log(__x) - __numeric_constants<_Tp>::__gamma_e()); _Tp __fact = _Tp(1); for (int __i = 1; __i <= __max_iter; ++__i) { __fact *= -__x / _Tp(__i); _Tp __del; if ( __i != __nm1 ) __del = -__fact / _Tp(__i - __nm1); else { _Tp __psi = -__numeric_constants<_Tp>::gamma_e(); for (int __ii = 1; __ii <= __nm1; ++__ii) __psi += _Tp(1) / _Tp(__ii); __del = __fact * (__psi - std::log(__x)); } __ans += __del; if (std::abs(__del) < __eps * std::abs(__ans)) return __ans; } std::__throw_runtime_error(__N("Series summation failed " "in __expint_En_series.")); } /** * @brief Return the exponential integral @f$ E_n(x) @f$ * by continued fractions. * * The exponential integral is given by * \f[ * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt * \f] * * @param __n The order of the exponential integral function. * @param __x The argument of the exponential integral function. * @return The exponential integral. */ template<typename _Tp> _Tp __expint_En_cont_frac(unsigned int __n, _Tp __x) { const unsigned int __max_iter = 1000; const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); const _Tp __fp_min = std::numeric_limits<_Tp>::min(); const int __nm1 = __n - 1; _Tp __b = __x + _Tp(__n); _Tp __c = _Tp(1) / __fp_min; _Tp __d = _Tp(1) / __b; _Tp __h = __d; for ( unsigned int __i = 1; __i <= __max_iter; ++__i ) { _Tp __a = -_Tp(__i * (__nm1 + __i)); __b += _Tp(2); __d = _Tp(1) / (__a * __d + __b); __c = __b + __a / __c; const _Tp __del = __c * __d; __h *= __del; if (std::abs(__del - _Tp(1)) < __eps) { const _Tp __ans = __h * std::exp(-__x); return __ans; } } std::__throw_runtime_error(__N("Continued fraction failed " "in __expint_En_cont_frac.")); } /** * @brief Return the exponential integral @f$ E_n(x) @f$ * by recursion. Use upward recursion for @f$ x < n @f$ * and downward recursion (Miller's algorithm) otherwise. * * The exponential integral is given by * \f[ * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt * \f] * * @param __n The order of the exponential integral function. * @param __x The argument of the exponential integral function. * @return The exponential integral. */ template<typename _Tp> _Tp __expint_En_recursion(unsigned int __n, _Tp __x) { _Tp __En; _Tp __E1 = __expint_E1(__x); if (__x < _Tp(__n)) { // Forward recursion is stable only for n < x. __En = __E1; for (unsigned int __j = 2; __j < __n; ++__j) __En = (std::exp(-__x) - __x * __En) / _Tp(__j - 1); } else { // Backward recursion is stable only for n >= x. __En = _Tp(1); const int __N = __n + 20; // TODO: Check this starting number. _Tp __save = _Tp(0); for (int __j = __N; __j > 0; --__j) { __En = (std::exp(-__x) - __j * __En) / __x; if (__j == __n) __save = __En; } _Tp __norm = __En / __E1; __En /= __norm; } return __En; } /** * @brief Return the exponential integral @f$ Ei(x) @f$ * by series summation. * * The exponential integral is given by * \f[ * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt * \f] * * @param __x The argument of the exponential integral function. * @return The exponential integral. */ template<typename _Tp> _Tp __expint_Ei_series(_Tp __x) { _Tp __term = _Tp(1); _Tp __sum = _Tp(0); const unsigned int __max_iter = 1000; for (unsigned int __i = 1; __i < __max_iter; ++__i) { __term *= __x / __i; __sum += __term / __i; if (__term < std::numeric_limits<_Tp>::epsilon() * __sum) break; } return __numeric_constants<_Tp>::__gamma_e() + __sum + std::log(__x); } /** * @brief Return the exponential integral @f$ Ei(x) @f$ * by asymptotic expansion. * * The exponential integral is given by * \f[ * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt * \f] * * @param __x The argument of the exponential integral function. * @return The exponential integral. */ template<typename _Tp> _Tp __expint_Ei_asymp(_Tp __x) { _Tp __term = _Tp(1); _Tp __sum = _Tp(1); const unsigned int __max_iter = 1000; for (unsigned int __i = 1; __i < __max_iter; ++__i) { _Tp __prev = __term; __term *= __i / __x; if (__term < std::numeric_limits<_Tp>::epsilon()) break; if (__term >= __prev) break; __sum += __term; } return std::exp(__x) * __sum / __x; } /** * @brief Return the exponential integral @f$ Ei(x) @f$. * * The exponential integral is given by * \f[ * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt * \f] * * @param __x The argument of the exponential integral function. * @return The exponential integral. */ template<typename _Tp> _Tp __expint_Ei(_Tp __x) { if (__x < _Tp(0)) return -__expint_E1(-__x); else if (__x < -std::log(std::numeric_limits<_Tp>::epsilon())) return __expint_Ei_series(__x); else return __expint_Ei_asymp(__x); } /** * @brief Return the exponential integral @f$ E_1(x) @f$. * * The exponential integral is given by * \f[ * E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt * \f] * * @param __x The argument of the exponential integral function. * @return The exponential integral. */ template<typename _Tp> _Tp __expint_E1(_Tp __x) { if (__x < _Tp(0)) return -__expint_Ei(-__x); else if (__x < _Tp(1)) return __expint_E1_series(__x); else if (__x < _Tp(100)) // TODO: Find a good asymptotic switch point. return __expint_En_cont_frac(1, __x); else return __expint_E1_asymp(__x); } /** * @brief Return the exponential integral @f$ E_n(x) @f$ * for large argument. * * The exponential integral is given by * \f[ * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt * \f] * * This is something of an extension. * * @param __n The order of the exponential integral function. * @param __x The argument of the exponential integral function. * @return The exponential integral. */ template<typename _Tp> _Tp __expint_asymp(unsigned int __n, _Tp __x) { _Tp __term = _Tp(1); _Tp __sum = _Tp(1); for (unsigned int __i = 1; __i <= __n; ++__i) { _Tp __prev = __term; __term *= -(__n - __i + 1) / __x; if (std::abs(__term) > std::abs(__prev)) break; __sum += __term; } return std::exp(-__x) * __sum / __x; } /** * @brief Return the exponential integral @f$ E_n(x) @f$ * for large order. * * The exponential integral is given by * \f[ * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt * \f] * * This is something of an extension. * * @param __n The order of the exponential integral function. * @param __x The argument of the exponential integral function. * @return The exponential integral. */ template<typename _Tp> _Tp __expint_large_n(unsigned int __n, _Tp __x) { const _Tp __xpn = __x + __n; const _Tp __xpn2 = __xpn * __xpn; _Tp __term = _Tp(1); _Tp __sum = _Tp(1); for (unsigned int __i = 1; __i <= __n; ++__i) { _Tp __prev = __term; __term *= (__n - 2 * (__i - 1) * __x) / __xpn2; if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon()) break; __sum += __term; } return std::exp(-__x) * __sum / __xpn; } /** * @brief Return the exponential integral @f$ E_n(x) @f$. * * The exponential integral is given by * \f[ * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt * \f] * This is something of an extension. * * @param __n The order of the exponential integral function. * @param __x The argument of the exponential integral function. * @return The exponential integral. */ template<typename _Tp> _Tp __expint(unsigned int __n, _Tp __x) { // Return NaN on NaN input. if (__isnan(__x)) return std::numeric_limits<_Tp>::quiet_NaN(); else if (__n <= 1 && __x == _Tp(0)) return std::numeric_limits<_Tp>::infinity(); else { _Tp __E0 = std::exp(__x) / __x; if (__n == 0) return __E0; _Tp __E1 = __expint_E1(__x); if (__n == 1) return __E1; if (__x == _Tp(0)) return _Tp(1) / static_cast<_Tp>(__n - 1); _Tp __En = __expint_En_recursion(__n, __x); return __En; } } /** * @brief Return the exponential integral @f$ Ei(x) @f$. * * The exponential integral is given by * \f[ * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt * \f] * * @param __x The argument of the exponential integral function. * @return The exponential integral. */ template<typename _Tp> inline _Tp __expint(_Tp __x) { if (__isnan(__x)) return std::numeric_limits<_Tp>::quiet_NaN(); else return __expint_Ei(__x); } } // namespace __detail #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) } // namespace tr1 #endif _GLIBCXX_END_NAMESPACE_VERSION } #endif // _GLIBCXX_TR1_EXP_INTEGRAL_TCC
Close