Linux ip-172-26-2-223 5.4.0-1018-aws #18-Ubuntu SMP Wed Jun 24 01:15:00 UTC 2020 x86_64
Apache
: 172.26.2.223 | : 3.16.44.204
Cant Read [ /etc/named.conf ]
8.1.13
www
www.github.com/MadExploits
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
UNLOCK SHELL
HASH IDENTIFIER
CPANEL RESET
CREATE WP USER
BLACK DEFEND!
README
+ Create Folder
+ Create File
/
usr /
include /
c++ /
9 /
bits /
[ HOME SHELL ]
Name
Size
Permission
Action
algorithmfwd.h
21.23
KB
-rw-r--r--
alloc_traits.h
20.98
KB
-rw-r--r--
allocated_ptr.h
3.22
KB
-rw-r--r--
allocator.h
7.76
KB
-rw-r--r--
atomic_base.h
24.41
KB
-rw-r--r--
atomic_futex.h
9.28
KB
-rw-r--r--
atomic_lockfree_defines.h
2.3
KB
-rw-r--r--
basic_ios.h
15.7
KB
-rw-r--r--
basic_ios.tcc
5.94
KB
-rw-r--r--
basic_string.h
241.28
KB
-rw-r--r--
basic_string.tcc
52.63
KB
-rw-r--r--
boost_concept_check.h
26.52
KB
-rw-r--r--
c++0x_warning.h
1.44
KB
-rw-r--r--
char_traits.h
24.25
KB
-rw-r--r--
codecvt.h
24.83
KB
-rw-r--r--
concept_check.h
3.34
KB
-rw-r--r--
cpp_type_traits.h
9.71
KB
-rw-r--r--
cxxabi_forced.h
1.77
KB
-rw-r--r--
cxxabi_init_exception.h
2.17
KB
-rw-r--r--
deque.tcc
33.6
KB
-rw-r--r--
enable_special_members.h
12.1
KB
-rw-r--r--
erase_if.h
1.99
KB
-rw-r--r--
exception.h
2.43
KB
-rw-r--r--
exception_defines.h
1.61
KB
-rw-r--r--
exception_ptr.h
5.84
KB
-rw-r--r--
forward_list.h
48.25
KB
-rw-r--r--
forward_list.tcc
13.55
KB
-rw-r--r--
fs_dir.h
14.81
KB
-rw-r--r--
fs_fwd.h
11.41
KB
-rw-r--r--
fs_ops.h
9.5
KB
-rw-r--r--
fs_path.h
36.09
KB
-rw-r--r--
fstream.tcc
32.87
KB
-rw-r--r--
functexcept.h
3.35
KB
-rw-r--r--
functional_hash.h
8.37
KB
-rw-r--r--
gslice.h
5.39
KB
-rw-r--r--
gslice_array.h
7.67
KB
-rw-r--r--
hash_bytes.h
2.1
KB
-rw-r--r--
hashtable.h
73.06
KB
-rw-r--r--
hashtable_policy.h
66.51
KB
-rw-r--r--
indirect_array.h
7.68
KB
-rw-r--r--
invoke.h
3.57
KB
-rw-r--r--
ios_base.h
30.7
KB
-rw-r--r--
istream.tcc
30.36
KB
-rw-r--r--
list.tcc
16.57
KB
-rw-r--r--
locale_classes.h
24.32
KB
-rw-r--r--
locale_classes.tcc
8.18
KB
-rw-r--r--
locale_conv.h
18.36
KB
-rw-r--r--
locale_facets.h
90.17
KB
-rw-r--r--
locale_facets.tcc
38.62
KB
-rw-r--r--
locale_facets_nonio.h
67.38
KB
-rw-r--r--
locale_facets_nonio.tcc
44.22
KB
-rw-r--r--
localefwd.h
5.8
KB
-rw-r--r--
mask_array.h
7.5
KB
-rw-r--r--
memoryfwd.h
2.4
KB
-rw-r--r--
move.h
6.38
KB
-rw-r--r--
nested_exception.h
4.69
KB
-rw-r--r--
node_handle.h
8.02
KB
-rw-r--r--
ostream.tcc
12.03
KB
-rw-r--r--
ostream_insert.h
3.91
KB
-rw-r--r--
parse_numbers.h
7.76
KB
-rw-r--r--
postypes.h
8.27
KB
-rw-r--r--
predefined_ops.h
8.87
KB
-rw-r--r--
ptr_traits.h
6.57
KB
-rw-r--r--
quoted_string.h
4.93
KB
-rw-r--r--
random.h
173.87
KB
-rw-r--r--
random.tcc
103.14
KB
-rw-r--r--
range_access.h
9.85
KB
-rw-r--r--
refwrap.h
12.62
KB
-rw-r--r--
regex.h
96.39
KB
-rw-r--r--
regex.tcc
16.19
KB
-rw-r--r--
regex_automaton.h
10.49
KB
-rw-r--r--
regex_automaton.tcc
7.54
KB
-rw-r--r--
regex_compiler.h
16.1
KB
-rw-r--r--
regex_compiler.tcc
18.49
KB
-rw-r--r--
regex_constants.h
14.36
KB
-rw-r--r--
regex_error.h
4.79
KB
-rw-r--r--
regex_executor.h
7.31
KB
-rw-r--r--
regex_executor.tcc
18.4
KB
-rw-r--r--
regex_scanner.h
6.92
KB
-rw-r--r--
regex_scanner.tcc
14.66
KB
-rw-r--r--
shared_ptr.h
23.65
KB
-rw-r--r--
shared_ptr_atomic.h
9.55
KB
-rw-r--r--
shared_ptr_base.h
52.51
KB
-rw-r--r--
slice_array.h
9.21
KB
-rw-r--r--
specfun.h
45.95
KB
-rw-r--r--
sstream.tcc
9.9
KB
-rw-r--r--
std_abs.h
3.3
KB
-rw-r--r--
std_function.h
23.01
KB
-rw-r--r--
std_mutex.h
4.66
KB
-rw-r--r--
stl_algo.h
210.37
KB
-rw-r--r--
stl_algobase.h
50.21
KB
-rw-r--r--
stl_bvector.h
33.09
KB
-rw-r--r--
stl_construct.h
7.22
KB
-rw-r--r--
stl_deque.h
78.24
KB
-rw-r--r--
stl_function.h
41.3
KB
-rw-r--r--
stl_heap.h
19.73
KB
-rw-r--r--
stl_iterator.h
41.75
KB
-rw-r--r--
stl_iterator_base_funcs.h
7.99
KB
-rw-r--r--
stl_iterator_base_types.h
8.48
KB
-rw-r--r--
stl_list.h
66.22
KB
-rw-r--r--
stl_map.h
52.24
KB
-rw-r--r--
stl_multimap.h
41.25
KB
-rw-r--r--
stl_multiset.h
35.63
KB
-rw-r--r--
stl_numeric.h
14.04
KB
-rw-r--r--
stl_pair.h
18.21
KB
-rw-r--r--
stl_queue.h
24
KB
-rw-r--r--
stl_raw_storage_iter.h
3.74
KB
-rw-r--r--
stl_relops.h
4.49
KB
-rw-r--r--
stl_set.h
35.93
KB
-rw-r--r--
stl_stack.h
11.94
KB
-rw-r--r--
stl_tempbuf.h
8.09
KB
-rw-r--r--
stl_tree.h
73.26
KB
-rw-r--r--
stl_uninitialized.h
30.72
KB
-rw-r--r--
stl_vector.h
63.45
KB
-rw-r--r--
stream_iterator.h
6.71
KB
-rw-r--r--
streambuf.tcc
4.81
KB
-rw-r--r--
streambuf_iterator.h
13.56
KB
-rw-r--r--
string_view.tcc
6.54
KB
-rw-r--r--
stringfwd.h
2.63
KB
-rw-r--r--
uniform_int_dist.h
10.01
KB
-rw-r--r--
unique_lock.h
5.96
KB
-rw-r--r--
unique_ptr.h
26.92
KB
-rw-r--r--
unordered_map.h
75.08
KB
-rw-r--r--
unordered_set.h
59.25
KB
-rw-r--r--
uses_allocator.h
6.66
KB
-rw-r--r--
valarray_after.h
22.3
KB
-rw-r--r--
valarray_array.h
20.8
KB
-rw-r--r--
valarray_array.tcc
7.08
KB
-rw-r--r--
valarray_before.h
18.69
KB
-rw-r--r--
vector.tcc
30.15
KB
-rw-r--r--
Delete
Unzip
Zip
${this.title}
Close
Code Editor : stl_algo.h
// Algorithm implementation -*- C++ -*- // Copyright (C) 2001-2019 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>. /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file bits/stl_algo.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{algorithm} */ #ifndef _STL_ALGO_H #define _STL_ALGO_H 1 #include <cstdlib> // for rand #include <bits/algorithmfwd.h> #include <bits/stl_heap.h> #include <bits/stl_tempbuf.h> // for _Temporary_buffer #include <bits/predefined_ops.h> #if __cplusplus >= 201103L #include <bits/uniform_int_dist.h> #endif // See concept_check.h for the __glibcxx_*_requires macros. namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION /// Swaps the median value of *__a, *__b and *__c under __comp to *__result template<typename _Iterator, typename _Compare> void __move_median_to_first(_Iterator __result,_Iterator __a, _Iterator __b, _Iterator __c, _Compare __comp) { if (__comp(__a, __b)) { if (__comp(__b, __c)) std::iter_swap(__result, __b); else if (__comp(__a, __c)) std::iter_swap(__result, __c); else std::iter_swap(__result, __a); } else if (__comp(__a, __c)) std::iter_swap(__result, __a); else if (__comp(__b, __c)) std::iter_swap(__result, __c); else std::iter_swap(__result, __b); } /// This is an overload used by find algos for the Input Iterator case. template<typename _InputIterator, typename _Predicate> inline _InputIterator __find_if(_InputIterator __first, _InputIterator __last, _Predicate __pred, input_iterator_tag) { while (__first != __last && !__pred(__first)) ++__first; return __first; } /// This is an overload used by find algos for the RAI case. template<typename _RandomAccessIterator, typename _Predicate> _RandomAccessIterator __find_if(_RandomAccessIterator __first, _RandomAccessIterator __last, _Predicate __pred, random_access_iterator_tag) { typename iterator_traits<_RandomAccessIterator>::difference_type __trip_count = (__last - __first) >> 2; for (; __trip_count > 0; --__trip_count) { if (__pred(__first)) return __first; ++__first; if (__pred(__first)) return __first; ++__first; if (__pred(__first)) return __first; ++__first; if (__pred(__first)) return __first; ++__first; } switch (__last - __first) { case 3: if (__pred(__first)) return __first; ++__first; case 2: if (__pred(__first)) return __first; ++__first; case 1: if (__pred(__first)) return __first; ++__first; case 0: default: return __last; } } template<typename _Iterator, typename _Predicate> inline _Iterator __find_if(_Iterator __first, _Iterator __last, _Predicate __pred) { return __find_if(__first, __last, __pred, std::__iterator_category(__first)); } /// Provided for stable_partition to use. template<typename _InputIterator, typename _Predicate> inline _InputIterator __find_if_not(_InputIterator __first, _InputIterator __last, _Predicate __pred) { return std::__find_if(__first, __last, __gnu_cxx::__ops::__negate(__pred), std::__iterator_category(__first)); } /// Like find_if_not(), but uses and updates a count of the /// remaining range length instead of comparing against an end /// iterator. template<typename _InputIterator, typename _Predicate, typename _Distance> _InputIterator __find_if_not_n(_InputIterator __first, _Distance& __len, _Predicate __pred) { for (; __len; --__len, (void) ++__first) if (!__pred(__first)) break; return __first; } // set_difference // set_intersection // set_symmetric_difference // set_union // for_each // find // find_if // find_first_of // adjacent_find // count // count_if // search template<typename _ForwardIterator1, typename _ForwardIterator2, typename _BinaryPredicate> _ForwardIterator1 __search(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _BinaryPredicate __predicate) { // Test for empty ranges if (__first1 == __last1 || __first2 == __last2) return __first1; // Test for a pattern of length 1. _ForwardIterator2 __p1(__first2); if (++__p1 == __last2) return std::__find_if(__first1, __last1, __gnu_cxx::__ops::__iter_comp_iter(__predicate, __first2)); // General case. _ForwardIterator2 __p; _ForwardIterator1 __current = __first1; for (;;) { __first1 = std::__find_if(__first1, __last1, __gnu_cxx::__ops::__iter_comp_iter(__predicate, __first2)); if (__first1 == __last1) return __last1; __p = __p1; __current = __first1; if (++__current == __last1) return __last1; while (__predicate(__current, __p)) { if (++__p == __last2) return __first1; if (++__current == __last1) return __last1; } ++__first1; } return __first1; } // search_n /** * This is an helper function for search_n overloaded for forward iterators. */ template<typename _ForwardIterator, typename _Integer, typename _UnaryPredicate> _ForwardIterator __search_n_aux(_ForwardIterator __first, _ForwardIterator __last, _Integer __count, _UnaryPredicate __unary_pred, std::forward_iterator_tag) { __first = std::__find_if(__first, __last, __unary_pred); while (__first != __last) { typename iterator_traits<_ForwardIterator>::difference_type __n = __count; _ForwardIterator __i = __first; ++__i; while (__i != __last && __n != 1 && __unary_pred(__i)) { ++__i; --__n; } if (__n == 1) return __first; if (__i == __last) return __last; __first = std::__find_if(++__i, __last, __unary_pred); } return __last; } /** * This is an helper function for search_n overloaded for random access * iterators. */ template<typename _RandomAccessIter, typename _Integer, typename _UnaryPredicate> _RandomAccessIter __search_n_aux(_RandomAccessIter __first, _RandomAccessIter __last, _Integer __count, _UnaryPredicate __unary_pred, std::random_access_iterator_tag) { typedef typename std::iterator_traits<_RandomAccessIter>::difference_type _DistanceType; _DistanceType __tailSize = __last - __first; _DistanceType __remainder = __count; while (__remainder <= __tailSize) // the main loop... { __first += __remainder; __tailSize -= __remainder; // __first here is always pointing to one past the last element of // next possible match. _RandomAccessIter __backTrack = __first; while (__unary_pred(--__backTrack)) { if (--__remainder == 0) return (__first - __count); // Success } __remainder = __count + 1 - (__first - __backTrack); } return __last; // Failure } template<typename _ForwardIterator, typename _Integer, typename _UnaryPredicate> _ForwardIterator __search_n(_ForwardIterator __first, _ForwardIterator __last, _Integer __count, _UnaryPredicate __unary_pred) { if (__count <= 0) return __first; if (__count == 1) return std::__find_if(__first, __last, __unary_pred); return std::__search_n_aux(__first, __last, __count, __unary_pred, std::__iterator_category(__first)); } // find_end for forward iterators. template<typename _ForwardIterator1, typename _ForwardIterator2, typename _BinaryPredicate> _ForwardIterator1 __find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, forward_iterator_tag, forward_iterator_tag, _BinaryPredicate __comp) { if (__first2 == __last2) return __last1; _ForwardIterator1 __result = __last1; while (1) { _ForwardIterator1 __new_result = std::__search(__first1, __last1, __first2, __last2, __comp); if (__new_result == __last1) return __result; else { __result = __new_result; __first1 = __new_result; ++__first1; } } } // find_end for bidirectional iterators (much faster). template<typename _BidirectionalIterator1, typename _BidirectionalIterator2, typename _BinaryPredicate> _BidirectionalIterator1 __find_end(_BidirectionalIterator1 __first1, _BidirectionalIterator1 __last1, _BidirectionalIterator2 __first2, _BidirectionalIterator2 __last2, bidirectional_iterator_tag, bidirectional_iterator_tag, _BinaryPredicate __comp) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator1>) __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator2>) typedef reverse_iterator<_BidirectionalIterator1> _RevIterator1; typedef reverse_iterator<_BidirectionalIterator2> _RevIterator2; _RevIterator1 __rlast1(__first1); _RevIterator2 __rlast2(__first2); _RevIterator1 __rresult = std::__search(_RevIterator1(__last1), __rlast1, _RevIterator2(__last2), __rlast2, __comp); if (__rresult == __rlast1) return __last1; else { _BidirectionalIterator1 __result = __rresult.base(); std::advance(__result, -std::distance(__first2, __last2)); return __result; } } /** * @brief Find last matching subsequence in a sequence. * @ingroup non_mutating_algorithms * @param __first1 Start of range to search. * @param __last1 End of range to search. * @param __first2 Start of sequence to match. * @param __last2 End of sequence to match. * @return The last iterator @c i in the range * @p [__first1,__last1-(__last2-__first2)) such that @c *(i+N) == * @p *(__first2+N) for each @c N in the range @p * [0,__last2-__first2), or @p __last1 if no such iterator exists. * * Searches the range @p [__first1,__last1) for a sub-sequence that * compares equal value-by-value with the sequence given by @p * [__first2,__last2) and returns an iterator to the __first * element of the sub-sequence, or @p __last1 if the sub-sequence * is not found. The sub-sequence will be the last such * subsequence contained in [__first1,__last1). * * Because the sub-sequence must lie completely within the range @p * [__first1,__last1) it must start at a position less than @p * __last1-(__last2-__first2) where @p __last2-__first2 is the * length of the sub-sequence. This means that the returned * iterator @c i will be in the range @p * [__first1,__last1-(__last2-__first2)) */ template<typename _ForwardIterator1, typename _ForwardIterator2> inline _ForwardIterator1 find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>) __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_ForwardIterator1>::value_type, typename iterator_traits<_ForwardIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); return std::__find_end(__first1, __last1, __first2, __last2, std::__iterator_category(__first1), std::__iterator_category(__first2), __gnu_cxx::__ops::__iter_equal_to_iter()); } /** * @brief Find last matching subsequence in a sequence using a predicate. * @ingroup non_mutating_algorithms * @param __first1 Start of range to search. * @param __last1 End of range to search. * @param __first2 Start of sequence to match. * @param __last2 End of sequence to match. * @param __comp The predicate to use. * @return The last iterator @c i in the range @p * [__first1,__last1-(__last2-__first2)) such that @c * predicate(*(i+N), @p (__first2+N)) is true for each @c N in the * range @p [0,__last2-__first2), or @p __last1 if no such iterator * exists. * * Searches the range @p [__first1,__last1) for a sub-sequence that * compares equal value-by-value with the sequence given by @p * [__first2,__last2) using comp as a predicate and returns an * iterator to the first element of the sub-sequence, or @p __last1 * if the sub-sequence is not found. The sub-sequence will be the * last such subsequence contained in [__first,__last1). * * Because the sub-sequence must lie completely within the range @p * [__first1,__last1) it must start at a position less than @p * __last1-(__last2-__first2) where @p __last2-__first2 is the * length of the sub-sequence. This means that the returned * iterator @c i will be in the range @p * [__first1,__last1-(__last2-__first2)) */ template<typename _ForwardIterator1, typename _ForwardIterator2, typename _BinaryPredicate> inline _ForwardIterator1 find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _BinaryPredicate __comp) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>) __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>) __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator1>::value_type, typename iterator_traits<_ForwardIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); return std::__find_end(__first1, __last1, __first2, __last2, std::__iterator_category(__first1), std::__iterator_category(__first2), __gnu_cxx::__ops::__iter_comp_iter(__comp)); } #if __cplusplus >= 201103L /** * @brief Checks that a predicate is true for all the elements * of a sequence. * @ingroup non_mutating_algorithms * @param __first An input iterator. * @param __last An input iterator. * @param __pred A predicate. * @return True if the check is true, false otherwise. * * Returns true if @p __pred is true for each element in the range * @p [__first,__last), and false otherwise. */ template<typename _InputIterator, typename _Predicate> inline bool all_of(_InputIterator __first, _InputIterator __last, _Predicate __pred) { return __last == std::find_if_not(__first, __last, __pred); } /** * @brief Checks that a predicate is false for all the elements * of a sequence. * @ingroup non_mutating_algorithms * @param __first An input iterator. * @param __last An input iterator. * @param __pred A predicate. * @return True if the check is true, false otherwise. * * Returns true if @p __pred is false for each element in the range * @p [__first,__last), and false otherwise. */ template<typename _InputIterator, typename _Predicate> inline bool none_of(_InputIterator __first, _InputIterator __last, _Predicate __pred) { return __last == _GLIBCXX_STD_A::find_if(__first, __last, __pred); } /** * @brief Checks that a predicate is true for at least one element * of a sequence. * @ingroup non_mutating_algorithms * @param __first An input iterator. * @param __last An input iterator. * @param __pred A predicate. * @return True if the check is true, false otherwise. * * Returns true if an element exists in the range @p * [__first,__last) such that @p __pred is true, and false * otherwise. */ template<typename _InputIterator, typename _Predicate> inline bool any_of(_InputIterator __first, _InputIterator __last, _Predicate __pred) { return !std::none_of(__first, __last, __pred); } /** * @brief Find the first element in a sequence for which a * predicate is false. * @ingroup non_mutating_algorithms * @param __first An input iterator. * @param __last An input iterator. * @param __pred A predicate. * @return The first iterator @c i in the range @p [__first,__last) * such that @p __pred(*i) is false, or @p __last if no such iterator exists. */ template<typename _InputIterator, typename _Predicate> inline _InputIterator find_if_not(_InputIterator __first, _InputIterator __last, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); return std::__find_if_not(__first, __last, __gnu_cxx::__ops::__pred_iter(__pred)); } /** * @brief Checks whether the sequence is partitioned. * @ingroup mutating_algorithms * @param __first An input iterator. * @param __last An input iterator. * @param __pred A predicate. * @return True if the range @p [__first,__last) is partioned by @p __pred, * i.e. if all elements that satisfy @p __pred appear before those that * do not. */ template<typename _InputIterator, typename _Predicate> inline bool is_partitioned(_InputIterator __first, _InputIterator __last, _Predicate __pred) { __first = std::find_if_not(__first, __last, __pred); if (__first == __last) return true; ++__first; return std::none_of(__first, __last, __pred); } /** * @brief Find the partition point of a partitioned range. * @ingroup mutating_algorithms * @param __first An iterator. * @param __last Another iterator. * @param __pred A predicate. * @return An iterator @p mid such that @p all_of(__first, mid, __pred) * and @p none_of(mid, __last, __pred) are both true. */ template<typename _ForwardIterator, typename _Predicate> _ForwardIterator partition_point(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_ForwardIterator>::value_type>) // A specific debug-mode test will be necessary... __glibcxx_requires_valid_range(__first, __last); typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType; _DistanceType __len = std::distance(__first, __last); _DistanceType __half; _ForwardIterator __middle; while (__len > 0) { __half = __len >> 1; __middle = __first; std::advance(__middle, __half); if (__pred(*__middle)) { __first = __middle; ++__first; __len = __len - __half - 1; } else __len = __half; } return __first; } #endif template<typename _InputIterator, typename _OutputIterator, typename _Predicate> _OutputIterator __remove_copy_if(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _Predicate __pred) { for (; __first != __last; ++__first) if (!__pred(__first)) { *__result = *__first; ++__result; } return __result; } /** * @brief Copy a sequence, removing elements of a given value. * @ingroup mutating_algorithms * @param __first An input iterator. * @param __last An input iterator. * @param __result An output iterator. * @param __value The value to be removed. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [__first,__last) not equal * to @p __value to the range beginning at @p __result. * remove_copy() is stable, so the relative order of elements that * are copied is unchanged. */ template<typename _InputIterator, typename _OutputIterator, typename _Tp> inline _OutputIterator remove_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result, const _Tp& __value) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator>::value_type, _Tp>) __glibcxx_requires_valid_range(__first, __last); return std::__remove_copy_if(__first, __last, __result, __gnu_cxx::__ops::__iter_equals_val(__value)); } /** * @brief Copy a sequence, removing elements for which a predicate is true. * @ingroup mutating_algorithms * @param __first An input iterator. * @param __last An input iterator. * @param __result An output iterator. * @param __pred A predicate. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [__first,__last) for which * @p __pred returns false to the range beginning at @p __result. * * remove_copy_if() is stable, so the relative order of elements that are * copied is unchanged. */ template<typename _InputIterator, typename _OutputIterator, typename _Predicate> inline _OutputIterator remove_copy_if(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); return std::__remove_copy_if(__first, __last, __result, __gnu_cxx::__ops::__pred_iter(__pred)); } #if __cplusplus >= 201103L /** * @brief Copy the elements of a sequence for which a predicate is true. * @ingroup mutating_algorithms * @param __first An input iterator. * @param __last An input iterator. * @param __result An output iterator. * @param __pred A predicate. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [__first,__last) for which * @p __pred returns true to the range beginning at @p __result. * * copy_if() is stable, so the relative order of elements that are * copied is unchanged. */ template<typename _InputIterator, typename _OutputIterator, typename _Predicate> _OutputIterator copy_if(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); for (; __first != __last; ++__first) if (__pred(*__first)) { *__result = *__first; ++__result; } return __result; } template<typename _InputIterator, typename _Size, typename _OutputIterator> _OutputIterator __copy_n(_InputIterator __first, _Size __n, _OutputIterator __result, input_iterator_tag) { if (__n > 0) { while (true) { *__result = *__first; ++__result; if (--__n > 0) ++__first; else break; } } return __result; } template<typename _RandomAccessIterator, typename _Size, typename _OutputIterator> inline _OutputIterator __copy_n(_RandomAccessIterator __first, _Size __n, _OutputIterator __result, random_access_iterator_tag) { return std::copy(__first, __first + __n, __result); } /** * @brief Copies the range [first,first+n) into [result,result+n). * @ingroup mutating_algorithms * @param __first An input iterator. * @param __n The number of elements to copy. * @param __result An output iterator. * @return result+n. * * This inline function will boil down to a call to @c memmove whenever * possible. Failing that, if random access iterators are passed, then the * loop count will be known (and therefore a candidate for compiler * optimizations such as unrolling). */ template<typename _InputIterator, typename _Size, typename _OutputIterator> inline _OutputIterator copy_n(_InputIterator __first, _Size __n, _OutputIterator __result) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) if (__n <= 0) return __result; __glibcxx_requires_can_increment(__first, __n); __glibcxx_requires_can_increment(__result, __n); return std::__copy_n(__first, __n, __result, std::__iterator_category(__first)); } /** * @brief Copy the elements of a sequence to separate output sequences * depending on the truth value of a predicate. * @ingroup mutating_algorithms * @param __first An input iterator. * @param __last An input iterator. * @param __out_true An output iterator. * @param __out_false An output iterator. * @param __pred A predicate. * @return A pair designating the ends of the resulting sequences. * * Copies each element in the range @p [__first,__last) for which * @p __pred returns true to the range beginning at @p out_true * and each element for which @p __pred returns false to @p __out_false. */ template<typename _InputIterator, typename _OutputIterator1, typename _OutputIterator2, typename _Predicate> pair<_OutputIterator1, _OutputIterator2> partition_copy(_InputIterator __first, _InputIterator __last, _OutputIterator1 __out_true, _OutputIterator2 __out_false, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator1, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator2, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); for (; __first != __last; ++__first) if (__pred(*__first)) { *__out_true = *__first; ++__out_true; } else { *__out_false = *__first; ++__out_false; } return pair<_OutputIterator1, _OutputIterator2>(__out_true, __out_false); } #endif template<typename _ForwardIterator, typename _Predicate> _ForwardIterator __remove_if(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred) { __first = std::__find_if(__first, __last, __pred); if (__first == __last) return __first; _ForwardIterator __result = __first; ++__first; for (; __first != __last; ++__first) if (!__pred(__first)) { *__result = _GLIBCXX_MOVE(*__first); ++__result; } return __result; } /** * @brief Remove elements from a sequence. * @ingroup mutating_algorithms * @param __first An input iterator. * @param __last An input iterator. * @param __value The value to be removed. * @return An iterator designating the end of the resulting sequence. * * All elements equal to @p __value are removed from the range * @p [__first,__last). * * remove() is stable, so the relative order of elements that are * not removed is unchanged. * * Elements between the end of the resulting sequence and @p __last * are still present, but their value is unspecified. */ template<typename _ForwardIterator, typename _Tp> inline _ForwardIterator remove(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_ForwardIterator>::value_type, _Tp>) __glibcxx_requires_valid_range(__first, __last); return std::__remove_if(__first, __last, __gnu_cxx::__ops::__iter_equals_val(__value)); } /** * @brief Remove elements from a sequence using a predicate. * @ingroup mutating_algorithms * @param __first A forward iterator. * @param __last A forward iterator. * @param __pred A predicate. * @return An iterator designating the end of the resulting sequence. * * All elements for which @p __pred returns true are removed from the range * @p [__first,__last). * * remove_if() is stable, so the relative order of elements that are * not removed is unchanged. * * Elements between the end of the resulting sequence and @p __last * are still present, but their value is unspecified. */ template<typename _ForwardIterator, typename _Predicate> inline _ForwardIterator remove_if(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); return std::__remove_if(__first, __last, __gnu_cxx::__ops::__pred_iter(__pred)); } template<typename _ForwardIterator, typename _BinaryPredicate> _ForwardIterator __adjacent_find(_ForwardIterator __first, _ForwardIterator __last, _BinaryPredicate __binary_pred) { if (__first == __last) return __last; _ForwardIterator __next = __first; while (++__next != __last) { if (__binary_pred(__first, __next)) return __first; __first = __next; } return __last; } template<typename _ForwardIterator, typename _BinaryPredicate> _ForwardIterator __unique(_ForwardIterator __first, _ForwardIterator __last, _BinaryPredicate __binary_pred) { // Skip the beginning, if already unique. __first = std::__adjacent_find(__first, __last, __binary_pred); if (__first == __last) return __last; // Do the real copy work. _ForwardIterator __dest = __first; ++__first; while (++__first != __last) if (!__binary_pred(__dest, __first)) *++__dest = _GLIBCXX_MOVE(*__first); return ++__dest; } /** * @brief Remove consecutive duplicate values from a sequence. * @ingroup mutating_algorithms * @param __first A forward iterator. * @param __last A forward iterator. * @return An iterator designating the end of the resulting sequence. * * Removes all but the first element from each group of consecutive * values that compare equal. * unique() is stable, so the relative order of elements that are * not removed is unchanged. * Elements between the end of the resulting sequence and @p __last * are still present, but their value is unspecified. */ template<typename _ForwardIterator> inline _ForwardIterator unique(_ForwardIterator __first, _ForwardIterator __last) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_EqualityComparableConcept< typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); return std::__unique(__first, __last, __gnu_cxx::__ops::__iter_equal_to_iter()); } /** * @brief Remove consecutive values from a sequence using a predicate. * @ingroup mutating_algorithms * @param __first A forward iterator. * @param __last A forward iterator. * @param __binary_pred A binary predicate. * @return An iterator designating the end of the resulting sequence. * * Removes all but the first element from each group of consecutive * values for which @p __binary_pred returns true. * unique() is stable, so the relative order of elements that are * not removed is unchanged. * Elements between the end of the resulting sequence and @p __last * are still present, but their value is unspecified. */ template<typename _ForwardIterator, typename _BinaryPredicate> inline _ForwardIterator unique(_ForwardIterator __first, _ForwardIterator __last, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); return std::__unique(__first, __last, __gnu_cxx::__ops::__iter_comp_iter(__binary_pred)); } /** * This is an uglified * unique_copy(_InputIterator, _InputIterator, _OutputIterator, * _BinaryPredicate) * overloaded for forward iterators and output iterator as result. */ template<typename _ForwardIterator, typename _OutputIterator, typename _BinaryPredicate> _OutputIterator __unique_copy(_ForwardIterator __first, _ForwardIterator __last, _OutputIterator __result, _BinaryPredicate __binary_pred, forward_iterator_tag, output_iterator_tag) { // concept requirements -- iterators already checked __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) _ForwardIterator __next = __first; *__result = *__first; while (++__next != __last) if (!__binary_pred(__first, __next)) { __first = __next; *++__result = *__first; } return ++__result; } /** * This is an uglified * unique_copy(_InputIterator, _InputIterator, _OutputIterator, * _BinaryPredicate) * overloaded for input iterators and output iterator as result. */ template<typename _InputIterator, typename _OutputIterator, typename _BinaryPredicate> _OutputIterator __unique_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _BinaryPredicate __binary_pred, input_iterator_tag, output_iterator_tag) { // concept requirements -- iterators already checked __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_InputIterator>::value_type, typename iterator_traits<_InputIterator>::value_type>) typename iterator_traits<_InputIterator>::value_type __value = *__first; __decltype(__gnu_cxx::__ops::__iter_comp_val(__binary_pred)) __rebound_pred = __gnu_cxx::__ops::__iter_comp_val(__binary_pred); *__result = __value; while (++__first != __last) if (!__rebound_pred(__first, __value)) { __value = *__first; *++__result = __value; } return ++__result; } /** * This is an uglified * unique_copy(_InputIterator, _InputIterator, _OutputIterator, * _BinaryPredicate) * overloaded for input iterators and forward iterator as result. */ template<typename _InputIterator, typename _ForwardIterator, typename _BinaryPredicate> _ForwardIterator __unique_copy(_InputIterator __first, _InputIterator __last, _ForwardIterator __result, _BinaryPredicate __binary_pred, input_iterator_tag, forward_iterator_tag) { // concept requirements -- iterators already checked __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_InputIterator>::value_type>) *__result = *__first; while (++__first != __last) if (!__binary_pred(__result, __first)) *++__result = *__first; return ++__result; } /** * This is an uglified reverse(_BidirectionalIterator, * _BidirectionalIterator) * overloaded for bidirectional iterators. */ template<typename _BidirectionalIterator> void __reverse(_BidirectionalIterator __first, _BidirectionalIterator __last, bidirectional_iterator_tag) { while (true) if (__first == __last || __first == --__last) return; else { std::iter_swap(__first, __last); ++__first; } } /** * This is an uglified reverse(_BidirectionalIterator, * _BidirectionalIterator) * overloaded for random access iterators. */ template<typename _RandomAccessIterator> void __reverse(_RandomAccessIterator __first, _RandomAccessIterator __last, random_access_iterator_tag) { if (__first == __last) return; --__last; while (__first < __last) { std::iter_swap(__first, __last); ++__first; --__last; } } /** * @brief Reverse a sequence. * @ingroup mutating_algorithms * @param __first A bidirectional iterator. * @param __last A bidirectional iterator. * @return reverse() returns no value. * * Reverses the order of the elements in the range @p [__first,__last), * so that the first element becomes the last etc. * For every @c i such that @p 0<=i<=(__last-__first)/2), @p reverse() * swaps @p *(__first+i) and @p *(__last-(i+1)) */ template<typename _BidirectionalIterator> inline void reverse(_BidirectionalIterator __first, _BidirectionalIterator __last) { // concept requirements __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_requires_valid_range(__first, __last); std::__reverse(__first, __last, std::__iterator_category(__first)); } /** * @brief Copy a sequence, reversing its elements. * @ingroup mutating_algorithms * @param __first A bidirectional iterator. * @param __last A bidirectional iterator. * @param __result An output iterator. * @return An iterator designating the end of the resulting sequence. * * Copies the elements in the range @p [__first,__last) to the * range @p [__result,__result+(__last-__first)) such that the * order of the elements is reversed. For every @c i such that @p * 0<=i<=(__last-__first), @p reverse_copy() performs the * assignment @p *(__result+(__last-__first)-1-i) = *(__first+i). * The ranges @p [__first,__last) and @p * [__result,__result+(__last-__first)) must not overlap. */ template<typename _BidirectionalIterator, typename _OutputIterator> _OutputIterator reverse_copy(_BidirectionalIterator __first, _BidirectionalIterator __last, _OutputIterator __result) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_BidirectionalIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); while (__first != __last) { --__last; *__result = *__last; ++__result; } return __result; } /** * This is a helper function for the rotate algorithm specialized on RAIs. * It returns the greatest common divisor of two integer values. */ template<typename _EuclideanRingElement> _EuclideanRingElement __gcd(_EuclideanRingElement __m, _EuclideanRingElement __n) { while (__n != 0) { _EuclideanRingElement __t = __m % __n; __m = __n; __n = __t; } return __m; } inline namespace _V2 { /// This is a helper function for the rotate algorithm. template<typename _ForwardIterator> _ForwardIterator __rotate(_ForwardIterator __first, _ForwardIterator __middle, _ForwardIterator __last, forward_iterator_tag) { if (__first == __middle) return __last; else if (__last == __middle) return __first; _ForwardIterator __first2 = __middle; do { std::iter_swap(__first, __first2); ++__first; ++__first2; if (__first == __middle) __middle = __first2; } while (__first2 != __last); _ForwardIterator __ret = __first; __first2 = __middle; while (__first2 != __last) { std::iter_swap(__first, __first2); ++__first; ++__first2; if (__first == __middle) __middle = __first2; else if (__first2 == __last) __first2 = __middle; } return __ret; } /// This is a helper function for the rotate algorithm. template<typename _BidirectionalIterator> _BidirectionalIterator __rotate(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, bidirectional_iterator_tag) { // concept requirements __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept< _BidirectionalIterator>) if (__first == __middle) return __last; else if (__last == __middle) return __first; std::__reverse(__first, __middle, bidirectional_iterator_tag()); std::__reverse(__middle, __last, bidirectional_iterator_tag()); while (__first != __middle && __middle != __last) { std::iter_swap(__first, --__last); ++__first; } if (__first == __middle) { std::__reverse(__middle, __last, bidirectional_iterator_tag()); return __last; } else { std::__reverse(__first, __middle, bidirectional_iterator_tag()); return __first; } } /// This is a helper function for the rotate algorithm. template<typename _RandomAccessIterator> _RandomAccessIterator __rotate(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last, random_access_iterator_tag) { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) if (__first == __middle) return __last; else if (__last == __middle) return __first; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _Distance; typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; _Distance __n = __last - __first; _Distance __k = __middle - __first; if (__k == __n - __k) { std::swap_ranges(__first, __middle, __middle); return __middle; } _RandomAccessIterator __p = __first; _RandomAccessIterator __ret = __first + (__last - __middle); for (;;) { if (__k < __n - __k) { if (__is_pod(_ValueType) && __k == 1) { _ValueType __t = _GLIBCXX_MOVE(*__p); _GLIBCXX_MOVE3(__p + 1, __p + __n, __p); *(__p + __n - 1) = _GLIBCXX_MOVE(__t); return __ret; } _RandomAccessIterator __q = __p + __k; for (_Distance __i = 0; __i < __n - __k; ++ __i) { std::iter_swap(__p, __q); ++__p; ++__q; } __n %= __k; if (__n == 0) return __ret; std::swap(__n, __k); __k = __n - __k; } else { __k = __n - __k; if (__is_pod(_ValueType) && __k == 1) { _ValueType __t = _GLIBCXX_MOVE(*(__p + __n - 1)); _GLIBCXX_MOVE_BACKWARD3(__p, __p + __n - 1, __p + __n); *__p = _GLIBCXX_MOVE(__t); return __ret; } _RandomAccessIterator __q = __p + __n; __p = __q - __k; for (_Distance __i = 0; __i < __n - __k; ++ __i) { --__p; --__q; std::iter_swap(__p, __q); } __n %= __k; if (__n == 0) return __ret; std::swap(__n, __k); } } } // _GLIBCXX_RESOLVE_LIB_DEFECTS // DR 488. rotate throws away useful information /** * @brief Rotate the elements of a sequence. * @ingroup mutating_algorithms * @param __first A forward iterator. * @param __middle A forward iterator. * @param __last A forward iterator. * @return first + (last - middle). * * Rotates the elements of the range @p [__first,__last) by * @p (__middle - __first) positions so that the element at @p __middle * is moved to @p __first, the element at @p __middle+1 is moved to * @p __first+1 and so on for each element in the range * @p [__first,__last). * * This effectively swaps the ranges @p [__first,__middle) and * @p [__middle,__last). * * Performs * @p *(__first+(n+(__last-__middle))%(__last-__first))=*(__first+n) * for each @p n in the range @p [0,__last-__first). */ template<typename _ForwardIterator> inline _ForwardIterator rotate(_ForwardIterator __first, _ForwardIterator __middle, _ForwardIterator __last) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_requires_valid_range(__first, __middle); __glibcxx_requires_valid_range(__middle, __last); return std::__rotate(__first, __middle, __last, std::__iterator_category(__first)); } } // namespace _V2 /** * @brief Copy a sequence, rotating its elements. * @ingroup mutating_algorithms * @param __first A forward iterator. * @param __middle A forward iterator. * @param __last A forward iterator. * @param __result An output iterator. * @return An iterator designating the end of the resulting sequence. * * Copies the elements of the range @p [__first,__last) to the * range beginning at @result, rotating the copied elements by * @p (__middle-__first) positions so that the element at @p __middle * is moved to @p __result, the element at @p __middle+1 is moved * to @p __result+1 and so on for each element in the range @p * [__first,__last). * * Performs * @p *(__result+(n+(__last-__middle))%(__last-__first))=*(__first+n) * for each @p n in the range @p [0,__last-__first). */ template<typename _ForwardIterator, typename _OutputIterator> inline _OutputIterator rotate_copy(_ForwardIterator __first, _ForwardIterator __middle, _ForwardIterator __last, _OutputIterator __result) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __middle); __glibcxx_requires_valid_range(__middle, __last); return std::copy(__first, __middle, std::copy(__middle, __last, __result)); } /// This is a helper function... template<typename _ForwardIterator, typename _Predicate> _ForwardIterator __partition(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, forward_iterator_tag) { if (__first == __last) return __first; while (__pred(*__first)) if (++__first == __last) return __first; _ForwardIterator __next = __first; while (++__next != __last) if (__pred(*__next)) { std::iter_swap(__first, __next); ++__first; } return __first; } /// This is a helper function... template<typename _BidirectionalIterator, typename _Predicate> _BidirectionalIterator __partition(_BidirectionalIterator __first, _BidirectionalIterator __last, _Predicate __pred, bidirectional_iterator_tag) { while (true) { while (true) if (__first == __last) return __first; else if (__pred(*__first)) ++__first; else break; --__last; while (true) if (__first == __last) return __first; else if (!bool(__pred(*__last))) --__last; else break; std::iter_swap(__first, __last); ++__first; } } // partition /// This is a helper function... /// Requires __first != __last and !__pred(__first) /// and __len == distance(__first, __last). /// /// !__pred(__first) allows us to guarantee that we don't /// move-assign an element onto itself. template<typename _ForwardIterator, typename _Pointer, typename _Predicate, typename _Distance> _ForwardIterator __stable_partition_adaptive(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, _Distance __len, _Pointer __buffer, _Distance __buffer_size) { if (__len == 1) return __first; if (__len <= __buffer_size) { _ForwardIterator __result1 = __first; _Pointer __result2 = __buffer; // The precondition guarantees that !__pred(__first), so // move that element to the buffer before starting the loop. // This ensures that we only call __pred once per element. *__result2 = _GLIBCXX_MOVE(*__first); ++__result2; ++__first; for (; __first != __last; ++__first) if (__pred(__first)) { *__result1 = _GLIBCXX_MOVE(*__first); ++__result1; } else { *__result2 = _GLIBCXX_MOVE(*__first); ++__result2; } _GLIBCXX_MOVE3(__buffer, __result2, __result1); return __result1; } _ForwardIterator __middle = __first; std::advance(__middle, __len / 2); _ForwardIterator __left_split = std::__stable_partition_adaptive(__first, __middle, __pred, __len / 2, __buffer, __buffer_size); // Advance past true-predicate values to satisfy this // function's preconditions. _Distance __right_len = __len - __len / 2; _ForwardIterator __right_split = std::__find_if_not_n(__middle, __right_len, __pred); if (__right_len) __right_split = std::__stable_partition_adaptive(__right_split, __last, __pred, __right_len, __buffer, __buffer_size); return std::rotate(__left_split, __middle, __right_split); } template<typename _ForwardIterator, typename _Predicate> _ForwardIterator __stable_partition(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred) { __first = std::__find_if_not(__first, __last, __pred); if (__first == __last) return __first; typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType; _Temporary_buffer<_ForwardIterator, _ValueType> __buf(__first, std::distance(__first, __last)); return std::__stable_partition_adaptive(__first, __last, __pred, _DistanceType(__buf.requested_size()), __buf.begin(), _DistanceType(__buf.size())); } /** * @brief Move elements for which a predicate is true to the beginning * of a sequence, preserving relative ordering. * @ingroup mutating_algorithms * @param __first A forward iterator. * @param __last A forward iterator. * @param __pred A predicate functor. * @return An iterator @p middle such that @p __pred(i) is true for each * iterator @p i in the range @p [first,middle) and false for each @p i * in the range @p [middle,last). * * Performs the same function as @p partition() with the additional * guarantee that the relative ordering of elements in each group is * preserved, so any two elements @p x and @p y in the range * @p [__first,__last) such that @p __pred(x)==__pred(y) will have the same * relative ordering after calling @p stable_partition(). */ template<typename _ForwardIterator, typename _Predicate> inline _ForwardIterator stable_partition(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); return std::__stable_partition(__first, __last, __gnu_cxx::__ops::__pred_iter(__pred)); } /// This is a helper function for the sort routines. template<typename _RandomAccessIterator, typename _Compare> void __heap_select(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last, _Compare __comp) { std::__make_heap(__first, __middle, __comp); for (_RandomAccessIterator __i = __middle; __i < __last; ++__i) if (__comp(__i, __first)) std::__pop_heap(__first, __middle, __i, __comp); } // partial_sort template<typename _InputIterator, typename _RandomAccessIterator, typename _Compare> _RandomAccessIterator __partial_sort_copy(_InputIterator __first, _InputIterator __last, _RandomAccessIterator __result_first, _RandomAccessIterator __result_last, _Compare __comp) { typedef typename iterator_traits<_InputIterator>::value_type _InputValueType; typedef iterator_traits<_RandomAccessIterator> _RItTraits; typedef typename _RItTraits::difference_type _DistanceType; if (__result_first == __result_last) return __result_last; _RandomAccessIterator __result_real_last = __result_first; while (__first != __last && __result_real_last != __result_last) { *__result_real_last = *__first; ++__result_real_last; ++__first; } std::__make_heap(__result_first, __result_real_last, __comp); while (__first != __last) { if (__comp(__first, __result_first)) std::__adjust_heap(__result_first, _DistanceType(0), _DistanceType(__result_real_last - __result_first), _InputValueType(*__first), __comp); ++__first; } std::__sort_heap(__result_first, __result_real_last, __comp); return __result_real_last; } /** * @brief Copy the smallest elements of a sequence. * @ingroup sorting_algorithms * @param __first An iterator. * @param __last Another iterator. * @param __result_first A random-access iterator. * @param __result_last Another random-access iterator. * @return An iterator indicating the end of the resulting sequence. * * Copies and sorts the smallest N values from the range @p [__first,__last) * to the range beginning at @p __result_first, where the number of * elements to be copied, @p N, is the smaller of @p (__last-__first) and * @p (__result_last-__result_first). * After the sort if @e i and @e j are iterators in the range * @p [__result_first,__result_first+N) such that i precedes j then * *j<*i is false. * The value returned is @p __result_first+N. */ template<typename _InputIterator, typename _RandomAccessIterator> inline _RandomAccessIterator partial_sort_copy(_InputIterator __first, _InputIterator __last, _RandomAccessIterator __result_first, _RandomAccessIterator __result_last) { #ifdef _GLIBCXX_CONCEPT_CHECKS typedef typename iterator_traits<_InputIterator>::value_type _InputValueType; typedef typename iterator_traits<_RandomAccessIterator>::value_type _OutputValueType; #endif // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_ConvertibleConcept<_InputValueType, _OutputValueType>) __glibcxx_function_requires(_LessThanOpConcept<_InputValueType, _OutputValueType>) __glibcxx_function_requires(_LessThanComparableConcept<_OutputValueType>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_irreflexive(__first, __last); __glibcxx_requires_valid_range(__result_first, __result_last); return std::__partial_sort_copy(__first, __last, __result_first, __result_last, __gnu_cxx::__ops::__iter_less_iter()); } /** * @brief Copy the smallest elements of a sequence using a predicate for * comparison. * @ingroup sorting_algorithms * @param __first An input iterator. * @param __last Another input iterator. * @param __result_first A random-access iterator. * @param __result_last Another random-access iterator. * @param __comp A comparison functor. * @return An iterator indicating the end of the resulting sequence. * * Copies and sorts the smallest N values from the range @p [__first,__last) * to the range beginning at @p result_first, where the number of * elements to be copied, @p N, is the smaller of @p (__last-__first) and * @p (__result_last-__result_first). * After the sort if @e i and @e j are iterators in the range * @p [__result_first,__result_first+N) such that i precedes j then * @p __comp(*j,*i) is false. * The value returned is @p __result_first+N. */ template<typename _InputIterator, typename _RandomAccessIterator, typename _Compare> inline _RandomAccessIterator partial_sort_copy(_InputIterator __first, _InputIterator __last, _RandomAccessIterator __result_first, _RandomAccessIterator __result_last, _Compare __comp) { #ifdef _GLIBCXX_CONCEPT_CHECKS typedef typename iterator_traits<_InputIterator>::value_type _InputValueType; typedef typename iterator_traits<_RandomAccessIterator>::value_type _OutputValueType; #endif // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_ConvertibleConcept<_InputValueType, _OutputValueType>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _InputValueType, _OutputValueType>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _OutputValueType, _OutputValueType>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_irreflexive_pred(__first, __last, __comp); __glibcxx_requires_valid_range(__result_first, __result_last); return std::__partial_sort_copy(__first, __last, __result_first, __result_last, __gnu_cxx::__ops::__iter_comp_iter(__comp)); } /// This is a helper function for the sort routine. template<typename _RandomAccessIterator, typename _Compare> void __unguarded_linear_insert(_RandomAccessIterator __last, _Compare __comp) { typename iterator_traits<_RandomAccessIterator>::value_type __val = _GLIBCXX_MOVE(*__last); _RandomAccessIterator __next = __last; --__next; while (__comp(__val, __next)) { *__last = _GLIBCXX_MOVE(*__next); __last = __next; --__next; } *__last = _GLIBCXX_MOVE(__val); } /// This is a helper function for the sort routine. template<typename _RandomAccessIterator, typename _Compare> void __insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { if (__first == __last) return; for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i) { if (__comp(__i, __first)) { typename iterator_traits<_RandomAccessIterator>::value_type __val = _GLIBCXX_MOVE(*__i); _GLIBCXX_MOVE_BACKWARD3(__first, __i, __i + 1); *__first = _GLIBCXX_MOVE(__val); } else std::__unguarded_linear_insert(__i, __gnu_cxx::__ops::__val_comp_iter(__comp)); } } /// This is a helper function for the sort routine. template<typename _RandomAccessIterator, typename _Compare> inline void __unguarded_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { for (_RandomAccessIterator __i = __first; __i != __last; ++__i) std::__unguarded_linear_insert(__i, __gnu_cxx::__ops::__val_comp_iter(__comp)); } /** * @doctodo * This controls some aspect of the sort routines. */ enum { _S_threshold = 16 }; /// This is a helper function for the sort routine. template<typename _RandomAccessIterator, typename _Compare> void __final_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { if (__last - __first > int(_S_threshold)) { std::__insertion_sort(__first, __first + int(_S_threshold), __comp); std::__unguarded_insertion_sort(__first + int(_S_threshold), __last, __comp); } else std::__insertion_sort(__first, __last, __comp); } /// This is a helper function... template<typename _RandomAccessIterator, typename _Compare> _RandomAccessIterator __unguarded_partition(_RandomAccessIterator __first, _RandomAccessIterator __last, _RandomAccessIterator __pivot, _Compare __comp) { while (true) { while (__comp(__first, __pivot)) ++__first; --__last; while (__comp(__pivot, __last)) --__last; if (!(__first < __last)) return __first; std::iter_swap(__first, __last); ++__first; } } /// This is a helper function... template<typename _RandomAccessIterator, typename _Compare> inline _RandomAccessIterator __unguarded_partition_pivot(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { _RandomAccessIterator __mid = __first + (__last - __first) / 2; std::__move_median_to_first(__first, __first + 1, __mid, __last - 1, __comp); return std::__unguarded_partition(__first + 1, __last, __first, __comp); } template<typename _RandomAccessIterator, typename _Compare> inline void __partial_sort(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last, _Compare __comp) { std::__heap_select(__first, __middle, __last, __comp); std::__sort_heap(__first, __middle, __comp); } /// This is a helper function for the sort routine. template<typename _RandomAccessIterator, typename _Size, typename _Compare> void __introsort_loop(_RandomAccessIterator __first, _RandomAccessIterator __last, _Size __depth_limit, _Compare __comp) { while (__last - __first > int(_S_threshold)) { if (__depth_limit == 0) { std::__partial_sort(__first, __last, __last, __comp); return; } --__depth_limit; _RandomAccessIterator __cut = std::__unguarded_partition_pivot(__first, __last, __comp); std::__introsort_loop(__cut, __last, __depth_limit, __comp); __last = __cut; } } // sort template<typename _RandomAccessIterator, typename _Compare> inline void __sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { if (__first != __last) { std::__introsort_loop(__first, __last, std::__lg(__last - __first) * 2, __comp); std::__final_insertion_sort(__first, __last, __comp); } } template<typename _RandomAccessIterator, typename _Size, typename _Compare> void __introselect(_RandomAccessIterator __first, _RandomAccessIterator __nth, _RandomAccessIterator __last, _Size __depth_limit, _Compare __comp) { while (__last - __first > 3) { if (__depth_limit == 0) { std::__heap_select(__first, __nth + 1, __last, __comp); // Place the nth largest element in its final position. std::iter_swap(__first, __nth); return; } --__depth_limit; _RandomAccessIterator __cut = std::__unguarded_partition_pivot(__first, __last, __comp); if (__cut <= __nth) __first = __cut; else __last = __cut; } std::__insertion_sort(__first, __last, __comp); } // nth_element // lower_bound moved to stl_algobase.h /** * @brief Finds the first position in which @p __val could be inserted * without changing the ordering. * @ingroup binary_search_algorithms * @param __first An iterator. * @param __last Another iterator. * @param __val The search term. * @param __comp A functor to use for comparisons. * @return An iterator pointing to the first element <em>not less * than</em> @p __val, or end() if every element is less * than @p __val. * @ingroup binary_search_algorithms * * The comparison function should have the same effects on ordering as * the function used for the initial sort. */ template<typename _ForwardIterator, typename _Tp, typename _Compare> inline _ForwardIterator lower_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val, _Compare __comp) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_ForwardIterator>::value_type, _Tp>) __glibcxx_requires_partitioned_lower_pred(__first, __last, __val, __comp); return std::__lower_bound(__first, __last, __val, __gnu_cxx::__ops::__iter_comp_val(__comp)); } template<typename _ForwardIterator, typename _Tp, typename _Compare> _ForwardIterator __upper_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val, _Compare __comp) { typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType; _DistanceType __len = std::distance(__first, __last); while (__len > 0) { _DistanceType __half = __len >> 1; _ForwardIterator __middle = __first; std::advance(__middle, __half); if (__comp(__val, __middle)) __len = __half; else { __first = __middle; ++__first; __len = __len - __half - 1; } } return __first; } /** * @brief Finds the last position in which @p __val could be inserted * without changing the ordering. * @ingroup binary_search_algorithms * @param __first An iterator. * @param __last Another iterator. * @param __val The search term. * @return An iterator pointing to the first element greater than @p __val, * or end() if no elements are greater than @p __val. * @ingroup binary_search_algorithms */ template<typename _ForwardIterator, typename _Tp> inline _ForwardIterator upper_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanOpConcept< _Tp, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_partitioned_upper(__first, __last, __val); return std::__upper_bound(__first, __last, __val, __gnu_cxx::__ops::__val_less_iter()); } /** * @brief Finds the last position in which @p __val could be inserted * without changing the ordering. * @ingroup binary_search_algorithms * @param __first An iterator. * @param __last Another iterator. * @param __val The search term. * @param __comp A functor to use for comparisons. * @return An iterator pointing to the first element greater than @p __val, * or end() if no elements are greater than @p __val. * @ingroup binary_search_algorithms * * The comparison function should have the same effects on ordering as * the function used for the initial sort. */ template<typename _ForwardIterator, typename _Tp, typename _Compare> inline _ForwardIterator upper_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val, _Compare __comp) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _Tp, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_partitioned_upper_pred(__first, __last, __val, __comp); return std::__upper_bound(__first, __last, __val, __gnu_cxx::__ops::__val_comp_iter(__comp)); } template<typename _ForwardIterator, typename _Tp, typename _CompareItTp, typename _CompareTpIt> pair<_ForwardIterator, _ForwardIterator> __equal_range(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val, _CompareItTp __comp_it_val, _CompareTpIt __comp_val_it) { typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType; _DistanceType __len = std::distance(__first, __last); while (__len > 0) { _DistanceType __half = __len >> 1; _ForwardIterator __middle = __first; std::advance(__middle, __half); if (__comp_it_val(__middle, __val)) { __first = __middle; ++__first; __len = __len - __half - 1; } else if (__comp_val_it(__val, __middle)) __len = __half; else { _ForwardIterator __left = std::__lower_bound(__first, __middle, __val, __comp_it_val); std::advance(__first, __len); _ForwardIterator __right = std::__upper_bound(++__middle, __first, __val, __comp_val_it); return pair<_ForwardIterator, _ForwardIterator>(__left, __right); } } return pair<_ForwardIterator, _ForwardIterator>(__first, __first); } /** * @brief Finds the largest subrange in which @p __val could be inserted * at any place in it without changing the ordering. * @ingroup binary_search_algorithms * @param __first An iterator. * @param __last Another iterator. * @param __val The search term. * @return An pair of iterators defining the subrange. * @ingroup binary_search_algorithms * * This is equivalent to * @code * std::make_pair(lower_bound(__first, __last, __val), * upper_bound(__first, __last, __val)) * @endcode * but does not actually call those functions. */ template<typename _ForwardIterator, typename _Tp> inline pair<_ForwardIterator, _ForwardIterator> equal_range(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanOpConcept< typename iterator_traits<_ForwardIterator>::value_type, _Tp>) __glibcxx_function_requires(_LessThanOpConcept< _Tp, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_partitioned_lower(__first, __last, __val); __glibcxx_requires_partitioned_upper(__first, __last, __val); return std::__equal_range(__first, __last, __val, __gnu_cxx::__ops::__iter_less_val(), __gnu_cxx::__ops::__val_less_iter()); } /** * @brief Finds the largest subrange in which @p __val could be inserted * at any place in it without changing the ordering. * @param __first An iterator. * @param __last Another iterator. * @param __val The search term. * @param __comp A functor to use for comparisons. * @return An pair of iterators defining the subrange. * @ingroup binary_search_algorithms * * This is equivalent to * @code * std::make_pair(lower_bound(__first, __last, __val, __comp), * upper_bound(__first, __last, __val, __comp)) * @endcode * but does not actually call those functions. */ template<typename _ForwardIterator, typename _Tp, typename _Compare> inline pair<_ForwardIterator, _ForwardIterator> equal_range(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val, _Compare __comp) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_ForwardIterator>::value_type, _Tp>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _Tp, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_partitioned_lower_pred(__first, __last, __val, __comp); __glibcxx_requires_partitioned_upper_pred(__first, __last, __val, __comp); return std::__equal_range(__first, __last, __val, __gnu_cxx::__ops::__iter_comp_val(__comp), __gnu_cxx::__ops::__val_comp_iter(__comp)); } /** * @brief Determines whether an element exists in a range. * @ingroup binary_search_algorithms * @param __first An iterator. * @param __last Another iterator. * @param __val The search term. * @return True if @p __val (or its equivalent) is in [@p * __first,@p __last ]. * * Note that this does not actually return an iterator to @p __val. For * that, use std::find or a container's specialized find member functions. */ template<typename _ForwardIterator, typename _Tp> bool binary_search(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanOpConcept< _Tp, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_partitioned_lower(__first, __last, __val); __glibcxx_requires_partitioned_upper(__first, __last, __val); _ForwardIterator __i = std::__lower_bound(__first, __last, __val, __gnu_cxx::__ops::__iter_less_val()); return __i != __last && !(__val < *__i); } /** * @brief Determines whether an element exists in a range. * @ingroup binary_search_algorithms * @param __first An iterator. * @param __last Another iterator. * @param __val The search term. * @param __comp A functor to use for comparisons. * @return True if @p __val (or its equivalent) is in @p [__first,__last]. * * Note that this does not actually return an iterator to @p __val. For * that, use std::find or a container's specialized find member functions. * * The comparison function should have the same effects on ordering as * the function used for the initial sort. */ template<typename _ForwardIterator, typename _Tp, typename _Compare> bool binary_search(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val, _Compare __comp) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _Tp, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_partitioned_lower_pred(__first, __last, __val, __comp); __glibcxx_requires_partitioned_upper_pred(__first, __last, __val, __comp); _ForwardIterator __i = std::__lower_bound(__first, __last, __val, __gnu_cxx::__ops::__iter_comp_val(__comp)); return __i != __last && !bool(__comp(__val, *__i)); } // merge /// This is a helper function for the __merge_adaptive routines. template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator, typename _Compare> void __move_merge_adaptive(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { while (__first1 != __last1 && __first2 != __last2) { if (__comp(__first2, __first1)) { *__result = _GLIBCXX_MOVE(*__first2); ++__first2; } else { *__result = _GLIBCXX_MOVE(*__first1); ++__first1; } ++__result; } if (__first1 != __last1) _GLIBCXX_MOVE3(__first1, __last1, __result); } /// This is a helper function for the __merge_adaptive routines. template<typename _BidirectionalIterator1, typename _BidirectionalIterator2, typename _BidirectionalIterator3, typename _Compare> void __move_merge_adaptive_backward(_BidirectionalIterator1 __first1, _BidirectionalIterator1 __last1, _BidirectionalIterator2 __first2, _BidirectionalIterator2 __last2, _BidirectionalIterator3 __result, _Compare __comp) { if (__first1 == __last1) { _GLIBCXX_MOVE_BACKWARD3(__first2, __last2, __result); return; } else if (__first2 == __last2) return; --__last1; --__last2; while (true) { if (__comp(__last2, __last1)) { *--__result = _GLIBCXX_MOVE(*__last1); if (__first1 == __last1) { _GLIBCXX_MOVE_BACKWARD3(__first2, ++__last2, __result); return; } --__last1; } else { *--__result = _GLIBCXX_MOVE(*__last2); if (__first2 == __last2) return; --__last2; } } } /// This is a helper function for the merge routines. template<typename _BidirectionalIterator1, typename _BidirectionalIterator2, typename _Distance> _BidirectionalIterator1 __rotate_adaptive(_BidirectionalIterator1 __first, _BidirectionalIterator1 __middle, _BidirectionalIterator1 __last, _Distance __len1, _Distance __len2, _BidirectionalIterator2 __buffer, _Distance __buffer_size) { _BidirectionalIterator2 __buffer_end; if (__len1 > __len2 && __len2 <= __buffer_size) { if (__len2) { __buffer_end = _GLIBCXX_MOVE3(__middle, __last, __buffer); _GLIBCXX_MOVE_BACKWARD3(__first, __middle, __last); return _GLIBCXX_MOVE3(__buffer, __buffer_end, __first); } else return __first; } else if (__len1 <= __buffer_size) { if (__len1) { __buffer_end = _GLIBCXX_MOVE3(__first, __middle, __buffer); _GLIBCXX_MOVE3(__middle, __last, __first); return _GLIBCXX_MOVE_BACKWARD3(__buffer, __buffer_end, __last); } else return __last; } else return std::rotate(__first, __middle, __last); } /// This is a helper function for the merge routines. template<typename _BidirectionalIterator, typename _Distance, typename _Pointer, typename _Compare> void __merge_adaptive(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Distance __len1, _Distance __len2, _Pointer __buffer, _Distance __buffer_size, _Compare __comp) { if (__len1 <= __len2 && __len1 <= __buffer_size) { _Pointer __buffer_end = _GLIBCXX_MOVE3(__first, __middle, __buffer); std::__move_merge_adaptive(__buffer, __buffer_end, __middle, __last, __first, __comp); } else if (__len2 <= __buffer_size) { _Pointer __buffer_end = _GLIBCXX_MOVE3(__middle, __last, __buffer); std::__move_merge_adaptive_backward(__first, __middle, __buffer, __buffer_end, __last, __comp); } else { _BidirectionalIterator __first_cut = __first; _BidirectionalIterator __second_cut = __middle; _Distance __len11 = 0; _Distance __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; std::advance(__first_cut, __len11); __second_cut = std::__lower_bound(__middle, __last, *__first_cut, __gnu_cxx::__ops::__iter_comp_val(__comp)); __len22 = std::distance(__middle, __second_cut); } else { __len22 = __len2 / 2; std::advance(__second_cut, __len22); __first_cut = std::__upper_bound(__first, __middle, *__second_cut, __gnu_cxx::__ops::__val_comp_iter(__comp)); __len11 = std::distance(__first, __first_cut); } _BidirectionalIterator __new_middle = std::__rotate_adaptive(__first_cut, __middle, __second_cut, __len1 - __len11, __len22, __buffer, __buffer_size); std::__merge_adaptive(__first, __first_cut, __new_middle, __len11, __len22, __buffer, __buffer_size, __comp); std::__merge_adaptive(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22, __buffer, __buffer_size, __comp); } } /// This is a helper function for the merge routines. template<typename _BidirectionalIterator, typename _Distance, typename _Compare> void __merge_without_buffer(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Distance __len1, _Distance __len2, _Compare __comp) { if (__len1 == 0 || __len2 == 0) return; if (__len1 + __len2 == 2) { if (__comp(__middle, __first)) std::iter_swap(__first, __middle); return; } _BidirectionalIterator __first_cut = __first; _BidirectionalIterator __second_cut = __middle; _Distance __len11 = 0; _Distance __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; std::advance(__first_cut, __len11); __second_cut = std::__lower_bound(__middle, __last, *__first_cut, __gnu_cxx::__ops::__iter_comp_val(__comp)); __len22 = std::distance(__middle, __second_cut); } else { __len22 = __len2 / 2; std::advance(__second_cut, __len22); __first_cut = std::__upper_bound(__first, __middle, *__second_cut, __gnu_cxx::__ops::__val_comp_iter(__comp)); __len11 = std::distance(__first, __first_cut); } _BidirectionalIterator __new_middle = std::rotate(__first_cut, __middle, __second_cut); std::__merge_without_buffer(__first, __first_cut, __new_middle, __len11, __len22, __comp); std::__merge_without_buffer(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22, __comp); } template<typename _BidirectionalIterator, typename _Compare> void __inplace_merge(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Compare __comp) { typedef typename iterator_traits<_BidirectionalIterator>::value_type _ValueType; typedef typename iterator_traits<_BidirectionalIterator>::difference_type _DistanceType; if (__first == __middle || __middle == __last) return; const _DistanceType __len1 = std::distance(__first, __middle); const _DistanceType __len2 = std::distance(__middle, __last); typedef _Temporary_buffer<_BidirectionalIterator, _ValueType> _TmpBuf; _TmpBuf __buf(__first, __len1 + __len2); if (__buf.begin() == 0) std::__merge_without_buffer (__first, __middle, __last, __len1, __len2, __comp); else std::__merge_adaptive (__first, __middle, __last, __len1, __len2, __buf.begin(), _DistanceType(__buf.size()), __comp); } /** * @brief Merges two sorted ranges in place. * @ingroup sorting_algorithms * @param __first An iterator. * @param __middle Another iterator. * @param __last Another iterator. * @return Nothing. * * Merges two sorted and consecutive ranges, [__first,__middle) and * [__middle,__last), and puts the result in [__first,__last). The * output will be sorted. The sort is @e stable, that is, for * equivalent elements in the two ranges, elements from the first * range will always come before elements from the second. * * If enough additional memory is available, this takes (__last-__first)-1 * comparisons. Otherwise an NlogN algorithm is used, where N is * distance(__first,__last). */ template<typename _BidirectionalIterator> inline void inplace_merge(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last) { // concept requirements __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_BidirectionalIterator>::value_type>) __glibcxx_requires_sorted(__first, __middle); __glibcxx_requires_sorted(__middle, __last); __glibcxx_requires_irreflexive(__first, __last); std::__inplace_merge(__first, __middle, __last, __gnu_cxx::__ops::__iter_less_iter()); } /** * @brief Merges two sorted ranges in place. * @ingroup sorting_algorithms * @param __first An iterator. * @param __middle Another iterator. * @param __last Another iterator. * @param __comp A functor to use for comparisons. * @return Nothing. * * Merges two sorted and consecutive ranges, [__first,__middle) and * [middle,last), and puts the result in [__first,__last). The output will * be sorted. The sort is @e stable, that is, for equivalent * elements in the two ranges, elements from the first range will always * come before elements from the second. * * If enough additional memory is available, this takes (__last-__first)-1 * comparisons. Otherwise an NlogN algorithm is used, where N is * distance(__first,__last). * * The comparison function should have the same effects on ordering as * the function used for the initial sort. */ template<typename _BidirectionalIterator, typename _Compare> inline void inplace_merge(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Compare __comp) { // concept requirements __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_BidirectionalIterator>::value_type, typename iterator_traits<_BidirectionalIterator>::value_type>) __glibcxx_requires_sorted_pred(__first, __middle, __comp); __glibcxx_requires_sorted_pred(__middle, __last, __comp); __glibcxx_requires_irreflexive_pred(__first, __last, __comp); std::__inplace_merge(__first, __middle, __last, __gnu_cxx::__ops::__iter_comp_iter(__comp)); } /// This is a helper function for the __merge_sort_loop routines. template<typename _InputIterator, typename _OutputIterator, typename _Compare> _OutputIterator __move_merge(_InputIterator __first1, _InputIterator __last1, _InputIterator __first2, _InputIterator __last2, _OutputIterator __result, _Compare __comp) { while (__first1 != __last1 && __first2 != __last2) { if (__comp(__first2, __first1)) { *__result = _GLIBCXX_MOVE(*__first2); ++__first2; } else { *__result = _GLIBCXX_MOVE(*__first1); ++__first1; } ++__result; } return _GLIBCXX_MOVE3(__first2, __last2, _GLIBCXX_MOVE3(__first1, __last1, __result)); } template<typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename _Distance, typename _Compare> void __merge_sort_loop(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __result, _Distance __step_size, _Compare __comp) { const _Distance __two_step = 2 * __step_size; while (__last - __first >= __two_step) { __result = std::__move_merge(__first, __first + __step_size, __first + __step_size, __first + __two_step, __result, __comp); __first += __two_step; } __step_size = std::min(_Distance(__last - __first), __step_size); std::__move_merge(__first, __first + __step_size, __first + __step_size, __last, __result, __comp); } template<typename _RandomAccessIterator, typename _Distance, typename _Compare> void __chunk_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Distance __chunk_size, _Compare __comp) { while (__last - __first >= __chunk_size) { std::__insertion_sort(__first, __first + __chunk_size, __comp); __first += __chunk_size; } std::__insertion_sort(__first, __last, __comp); } enum { _S_chunk_size = 7 }; template<typename _RandomAccessIterator, typename _Pointer, typename _Compare> void __merge_sort_with_buffer(_RandomAccessIterator __first, _RandomAccessIterator __last, _Pointer __buffer, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::difference_type _Distance; const _Distance __len = __last - __first; const _Pointer __buffer_last = __buffer + __len; _Distance __step_size = _S_chunk_size; std::__chunk_insertion_sort(__first, __last, __step_size, __comp); while (__step_size < __len) { std::__merge_sort_loop(__first, __last, __buffer, __step_size, __comp); __step_size *= 2; std::__merge_sort_loop(__buffer, __buffer_last, __first, __step_size, __comp); __step_size *= 2; } } template<typename _RandomAccessIterator, typename _Pointer, typename _Distance, typename _Compare> void __stable_sort_adaptive(_RandomAccessIterator __first, _RandomAccessIterator __last, _Pointer __buffer, _Distance __buffer_size, _Compare __comp) { const _Distance __len = (__last - __first + 1) / 2; const _RandomAccessIterator __middle = __first + __len; if (__len > __buffer_size) { std::__stable_sort_adaptive(__first, __middle, __buffer, __buffer_size, __comp); std::__stable_sort_adaptive(__middle, __last, __buffer, __buffer_size, __comp); } else { std::__merge_sort_with_buffer(__first, __middle, __buffer, __comp); std::__merge_sort_with_buffer(__middle, __last, __buffer, __comp); } std::__merge_adaptive(__first, __middle, __last, _Distance(__middle - __first), _Distance(__last - __middle), __buffer, __buffer_size, __comp); } /// This is a helper function for the stable sorting routines. template<typename _RandomAccessIterator, typename _Compare> void __inplace_stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { if (__last - __first < 15) { std::__insertion_sort(__first, __last, __comp); return; } _RandomAccessIterator __middle = __first + (__last - __first) / 2; std::__inplace_stable_sort(__first, __middle, __comp); std::__inplace_stable_sort(__middle, __last, __comp); std::__merge_without_buffer(__first, __middle, __last, __middle - __first, __last - __middle, __comp); } // stable_sort // Set algorithms: includes, set_union, set_intersection, set_difference, // set_symmetric_difference. All of these algorithms have the precondition // that their input ranges are sorted and the postcondition that their output // ranges are sorted. template<typename _InputIterator1, typename _InputIterator2, typename _Compare> bool __includes(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _Compare __comp) { while (__first1 != __last1 && __first2 != __last2) if (__comp(__first2, __first1)) return false; else if (__comp(__first1, __first2)) ++__first1; else { ++__first1; ++__first2; } return __first2 == __last2; } /** * @brief Determines whether all elements of a sequence exists in a range. * @param __first1 Start of search range. * @param __last1 End of search range. * @param __first2 Start of sequence * @param __last2 End of sequence. * @return True if each element in [__first2,__last2) is contained in order * within [__first1,__last1). False otherwise. * @ingroup set_algorithms * * This operation expects both [__first1,__last1) and * [__first2,__last2) to be sorted. Searches for the presence of * each element in [__first2,__last2) within [__first1,__last1). * The iterators over each range only move forward, so this is a * linear algorithm. If an element in [__first2,__last2) is not * found before the search iterator reaches @p __last2, false is * returned. */ template<typename _InputIterator1, typename _InputIterator2> inline bool includes(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_LessThanOpConcept< typename iterator_traits<_InputIterator1>::value_type, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_function_requires(_LessThanOpConcept< typename iterator_traits<_InputIterator2>::value_type, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_requires_sorted_set(__first1, __last1, __first2); __glibcxx_requires_sorted_set(__first2, __last2, __first1); __glibcxx_requires_irreflexive2(__first1, __last1); __glibcxx_requires_irreflexive2(__first2, __last2); return std::__includes(__first1, __last1, __first2, __last2, __gnu_cxx::__ops::__iter_less_iter()); } /** * @brief Determines whether all elements of a sequence exists in a range * using comparison. * @ingroup set_algorithms * @param __first1 Start of search range. * @param __last1 End of search range. * @param __first2 Start of sequence * @param __last2 End of sequence. * @param __comp Comparison function to use. * @return True if each element in [__first2,__last2) is contained * in order within [__first1,__last1) according to comp. False * otherwise. @ingroup set_algorithms * * This operation expects both [__first1,__last1) and * [__first2,__last2) to be sorted. Searches for the presence of * each element in [__first2,__last2) within [__first1,__last1), * using comp to decide. The iterators over each range only move * forward, so this is a linear algorithm. If an element in * [__first2,__last2) is not found before the search iterator * reaches @p __last2, false is returned. */ template<typename _InputIterator1, typename _InputIterator2, typename _Compare> inline bool includes(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _Compare __comp) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_InputIterator1>::value_type, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_InputIterator2>::value_type, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_requires_sorted_set_pred(__first1, __last1, __first2, __comp); __glibcxx_requires_sorted_set_pred(__first2, __last2, __first1, __comp); __glibcxx_requires_irreflexive_pred2(__first1, __last1, __comp); __glibcxx_requires_irreflexive_pred2(__first2, __last2, __comp); return std::__includes(__first1, __last1, __first2, __last2, __gnu_cxx::__ops::__iter_comp_iter(__comp)); } // nth_element // merge // set_difference // set_intersection // set_union // stable_sort // set_symmetric_difference // min_element // max_element template<typename _BidirectionalIterator, typename _Compare> bool __next_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last, _Compare __comp) { if (__first == __last) return false; _BidirectionalIterator __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i; for(;;) { _BidirectionalIterator __ii = __i; --__i; if (__comp(__i, __ii)) { _BidirectionalIterator __j = __last; while (!__comp(__i, --__j)) {} std::iter_swap(__i, __j); std::__reverse(__ii, __last, std::__iterator_category(__first)); return true; } if (__i == __first) { std::__reverse(__first, __last, std::__iterator_category(__first)); return false; } } } /** * @brief Permute range into the next @e dictionary ordering. * @ingroup sorting_algorithms * @param __first Start of range. * @param __last End of range. * @return False if wrapped to first permutation, true otherwise. * * Treats all permutations of the range as a set of @e dictionary sorted * sequences. Permutes the current sequence into the next one of this set. * Returns true if there are more sequences to generate. If the sequence * is the largest of the set, the smallest is generated and false returned. */ template<typename _BidirectionalIterator> inline bool next_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_BidirectionalIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_irreflexive(__first, __last); return std::__next_permutation (__first, __last, __gnu_cxx::__ops::__iter_less_iter()); } /** * @brief Permute range into the next @e dictionary ordering using * comparison functor. * @ingroup sorting_algorithms * @param __first Start of range. * @param __last End of range. * @param __comp A comparison functor. * @return False if wrapped to first permutation, true otherwise. * * Treats all permutations of the range [__first,__last) as a set of * @e dictionary sorted sequences ordered by @p __comp. Permutes the current * sequence into the next one of this set. Returns true if there are more * sequences to generate. If the sequence is the largest of the set, the * smallest is generated and false returned. */ template<typename _BidirectionalIterator, typename _Compare> inline bool next_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last, _Compare __comp) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_BidirectionalIterator>::value_type, typename iterator_traits<_BidirectionalIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_irreflexive_pred(__first, __last, __comp); return std::__next_permutation (__first, __last, __gnu_cxx::__ops::__iter_comp_iter(__comp)); } template<typename _BidirectionalIterator, typename _Compare> bool __prev_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last, _Compare __comp) { if (__first == __last) return false; _BidirectionalIterator __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i; for(;;) { _BidirectionalIterator __ii = __i; --__i; if (__comp(__ii, __i)) { _BidirectionalIterator __j = __last; while (!__comp(--__j, __i)) {} std::iter_swap(__i, __j); std::__reverse(__ii, __last, std::__iterator_category(__first)); return true; } if (__i == __first) { std::__reverse(__first, __last, std::__iterator_category(__first)); return false; } } } /** * @brief Permute range into the previous @e dictionary ordering. * @ingroup sorting_algorithms * @param __first Start of range. * @param __last End of range. * @return False if wrapped to last permutation, true otherwise. * * Treats all permutations of the range as a set of @e dictionary sorted * sequences. Permutes the current sequence into the previous one of this * set. Returns true if there are more sequences to generate. If the * sequence is the smallest of the set, the largest is generated and false * returned. */ template<typename _BidirectionalIterator> inline bool prev_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_BidirectionalIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_irreflexive(__first, __last); return std::__prev_permutation(__first, __last, __gnu_cxx::__ops::__iter_less_iter()); } /** * @brief Permute range into the previous @e dictionary ordering using * comparison functor. * @ingroup sorting_algorithms * @param __first Start of range. * @param __last End of range. * @param __comp A comparison functor. * @return False if wrapped to last permutation, true otherwise. * * Treats all permutations of the range [__first,__last) as a set of * @e dictionary sorted sequences ordered by @p __comp. Permutes the current * sequence into the previous one of this set. Returns true if there are * more sequences to generate. If the sequence is the smallest of the set, * the largest is generated and false returned. */ template<typename _BidirectionalIterator, typename _Compare> inline bool prev_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last, _Compare __comp) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_BidirectionalIterator>::value_type, typename iterator_traits<_BidirectionalIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_irreflexive_pred(__first, __last, __comp); return std::__prev_permutation(__first, __last, __gnu_cxx::__ops::__iter_comp_iter(__comp)); } // replace // replace_if template<typename _InputIterator, typename _OutputIterator, typename _Predicate, typename _Tp> _OutputIterator __replace_copy_if(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _Predicate __pred, const _Tp& __new_value) { for (; __first != __last; ++__first, (void)++__result) if (__pred(__first)) *__result = __new_value; else *__result = *__first; return __result; } /** * @brief Copy a sequence, replacing each element of one value with another * value. * @param __first An input iterator. * @param __last An input iterator. * @param __result An output iterator. * @param __old_value The value to be replaced. * @param __new_value The replacement value. * @return The end of the output sequence, @p result+(last-first). * * Copies each element in the input range @p [__first,__last) to the * output range @p [__result,__result+(__last-__first)) replacing elements * equal to @p __old_value with @p __new_value. */ template<typename _InputIterator, typename _OutputIterator, typename _Tp> inline _OutputIterator replace_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result, const _Tp& __old_value, const _Tp& __new_value) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator>::value_type, _Tp>) __glibcxx_requires_valid_range(__first, __last); return std::__replace_copy_if(__first, __last, __result, __gnu_cxx::__ops::__iter_equals_val(__old_value), __new_value); } /** * @brief Copy a sequence, replacing each value for which a predicate * returns true with another value. * @ingroup mutating_algorithms * @param __first An input iterator. * @param __last An input iterator. * @param __result An output iterator. * @param __pred A predicate. * @param __new_value The replacement value. * @return The end of the output sequence, @p __result+(__last-__first). * * Copies each element in the range @p [__first,__last) to the range * @p [__result,__result+(__last-__first)) replacing elements for which * @p __pred returns true with @p __new_value. */ template<typename _InputIterator, typename _OutputIterator, typename _Predicate, typename _Tp> inline _OutputIterator replace_copy_if(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _Predicate __pred, const _Tp& __new_value) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); return std::__replace_copy_if(__first, __last, __result, __gnu_cxx::__ops::__pred_iter(__pred), __new_value); } template<typename _InputIterator, typename _Predicate> typename iterator_traits<_InputIterator>::difference_type __count_if(_InputIterator __first, _InputIterator __last, _Predicate __pred) { typename iterator_traits<_InputIterator>::difference_type __n = 0; for (; __first != __last; ++__first) if (__pred(__first)) ++__n; return __n; } #if __cplusplus >= 201103L /** * @brief Determines whether the elements of a sequence are sorted. * @ingroup sorting_algorithms * @param __first An iterator. * @param __last Another iterator. * @return True if the elements are sorted, false otherwise. */ template<typename _ForwardIterator> inline bool is_sorted(_ForwardIterator __first, _ForwardIterator __last) { return std::is_sorted_until(__first, __last) == __last; } /** * @brief Determines whether the elements of a sequence are sorted * according to a comparison functor. * @ingroup sorting_algorithms * @param __first An iterator. * @param __last Another iterator. * @param __comp A comparison functor. * @return True if the elements are sorted, false otherwise. */ template<typename _ForwardIterator, typename _Compare> inline bool is_sorted(_ForwardIterator __first, _ForwardIterator __last, _Compare __comp) { return std::is_sorted_until(__first, __last, __comp) == __last; } template<typename _ForwardIterator, typename _Compare> _ForwardIterator __is_sorted_until(_ForwardIterator __first, _ForwardIterator __last, _Compare __comp) { if (__first == __last) return __last; _ForwardIterator __next = __first; for (++__next; __next != __last; __first = __next, (void)++__next) if (__comp(__next, __first)) return __next; return __next; } /** * @brief Determines the end of a sorted sequence. * @ingroup sorting_algorithms * @param __first An iterator. * @param __last Another iterator. * @return An iterator pointing to the last iterator i in [__first, __last) * for which the range [__first, i) is sorted. */ template<typename _ForwardIterator> inline _ForwardIterator is_sorted_until(_ForwardIterator __first, _ForwardIterator __last) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_irreflexive(__first, __last); return std::__is_sorted_until(__first, __last, __gnu_cxx::__ops::__iter_less_iter()); } /** * @brief Determines the end of a sorted sequence using comparison functor. * @ingroup sorting_algorithms * @param __first An iterator. * @param __last Another iterator. * @param __comp A comparison functor. * @return An iterator pointing to the last iterator i in [__first, __last) * for which the range [__first, i) is sorted. */ template<typename _ForwardIterator, typename _Compare> inline _ForwardIterator is_sorted_until(_ForwardIterator __first, _ForwardIterator __last, _Compare __comp) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_irreflexive_pred(__first, __last, __comp); return std::__is_sorted_until(__first, __last, __gnu_cxx::__ops::__iter_comp_iter(__comp)); } /** * @brief Determines min and max at once as an ordered pair. * @ingroup sorting_algorithms * @param __a A thing of arbitrary type. * @param __b Another thing of arbitrary type. * @return A pair(__b, __a) if __b is smaller than __a, pair(__a, * __b) otherwise. */ template<typename _Tp> _GLIBCXX14_CONSTEXPR inline pair<const _Tp&, const _Tp&> minmax(const _Tp& __a, const _Tp& __b) { // concept requirements __glibcxx_function_requires(_LessThanComparableConcept<_Tp>) return __b < __a ? pair<const _Tp&, const _Tp&>(__b, __a) : pair<const _Tp&, const _Tp&>(__a, __b); } /** * @brief Determines min and max at once as an ordered pair. * @ingroup sorting_algorithms * @param __a A thing of arbitrary type. * @param __b Another thing of arbitrary type. * @param __comp A @link comparison_functors comparison functor @endlink. * @return A pair(__b, __a) if __b is smaller than __a, pair(__a, * __b) otherwise. */ template<typename _Tp, typename _Compare> _GLIBCXX14_CONSTEXPR inline pair<const _Tp&, const _Tp&> minmax(const _Tp& __a, const _Tp& __b, _Compare __comp) { return __comp(__b, __a) ? pair<const _Tp&, const _Tp&>(__b, __a) : pair<const _Tp&, const _Tp&>(__a, __b); } template<typename _ForwardIterator, typename _Compare> _GLIBCXX14_CONSTEXPR pair<_ForwardIterator, _ForwardIterator> __minmax_element(_ForwardIterator __first, _ForwardIterator __last, _Compare __comp) { _ForwardIterator __next = __first; if (__first == __last || ++__next == __last) return std::make_pair(__first, __first); _ForwardIterator __min{}, __max{}; if (__comp(__next, __first)) { __min = __next; __max = __first; } else { __min = __first; __max = __next; } __first = __next; ++__first; while (__first != __last) { __next = __first; if (++__next == __last) { if (__comp(__first, __min)) __min = __first; else if (!__comp(__first, __max)) __max = __first; break; } if (__comp(__next, __first)) { if (__comp(__next, __min)) __min = __next; if (!__comp(__first, __max)) __max = __first; } else { if (__comp(__first, __min)) __min = __first; if (!__comp(__next, __max)) __max = __next; } __first = __next; ++__first; } return std::make_pair(__min, __max); } /** * @brief Return a pair of iterators pointing to the minimum and maximum * elements in a range. * @ingroup sorting_algorithms * @param __first Start of range. * @param __last End of range. * @return make_pair(m, M), where m is the first iterator i in * [__first, __last) such that no other element in the range is * smaller, and where M is the last iterator i in [__first, __last) * such that no other element in the range is larger. */ template<typename _ForwardIterator> _GLIBCXX14_CONSTEXPR inline pair<_ForwardIterator, _ForwardIterator> minmax_element(_ForwardIterator __first, _ForwardIterator __last) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_irreflexive(__first, __last); return std::__minmax_element(__first, __last, __gnu_cxx::__ops::__iter_less_iter()); } /** * @brief Return a pair of iterators pointing to the minimum and maximum * elements in a range. * @ingroup sorting_algorithms * @param __first Start of range. * @param __last End of range. * @param __comp Comparison functor. * @return make_pair(m, M), where m is the first iterator i in * [__first, __last) such that no other element in the range is * smaller, and where M is the last iterator i in [__first, __last) * such that no other element in the range is larger. */ template<typename _ForwardIterator, typename _Compare> _GLIBCXX14_CONSTEXPR inline pair<_ForwardIterator, _ForwardIterator> minmax_element(_ForwardIterator __first, _ForwardIterator __last, _Compare __comp) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_irreflexive_pred(__first, __last, __comp); return std::__minmax_element(__first, __last, __gnu_cxx::__ops::__iter_comp_iter(__comp)); } // N2722 + DR 915. template<typename _Tp> _GLIBCXX14_CONSTEXPR inline _Tp min(initializer_list<_Tp> __l) { return *std::min_element(__l.begin(), __l.end()); } template<typename _Tp, typename _Compare> _GLIBCXX14_CONSTEXPR inline _Tp min(initializer_list<_Tp> __l, _Compare __comp) { return *std::min_element(__l.begin(), __l.end(), __comp); } template<typename _Tp> _GLIBCXX14_CONSTEXPR inline _Tp max(initializer_list<_Tp> __l) { return *std::max_element(__l.begin(), __l.end()); } template<typename _Tp, typename _Compare> _GLIBCXX14_CONSTEXPR inline _Tp max(initializer_list<_Tp> __l, _Compare __comp) { return *std::max_element(__l.begin(), __l.end(), __comp); } template<typename _Tp> _GLIBCXX14_CONSTEXPR inline pair<_Tp, _Tp> minmax(initializer_list<_Tp> __l) { pair<const _Tp*, const _Tp*> __p = std::minmax_element(__l.begin(), __l.end()); return std::make_pair(*__p.first, *__p.second); } template<typename _Tp, typename _Compare> _GLIBCXX14_CONSTEXPR inline pair<_Tp, _Tp> minmax(initializer_list<_Tp> __l, _Compare __comp) { pair<const _Tp*, const _Tp*> __p = std::minmax_element(__l.begin(), __l.end(), __comp); return std::make_pair(*__p.first, *__p.second); } template<typename _ForwardIterator1, typename _ForwardIterator2, typename _BinaryPredicate> bool __is_permutation(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _BinaryPredicate __pred) { // Efficiently compare identical prefixes: O(N) if sequences // have the same elements in the same order. for (; __first1 != __last1; ++__first1, (void)++__first2) if (!__pred(__first1, __first2)) break; if (__first1 == __last1) return true; // Establish __last2 assuming equal ranges by iterating over the // rest of the list. _ForwardIterator2 __last2 = __first2; std::advance(__last2, std::distance(__first1, __last1)); for (_ForwardIterator1 __scan = __first1; __scan != __last1; ++__scan) { if (__scan != std::__find_if(__first1, __scan, __gnu_cxx::__ops::__iter_comp_iter(__pred, __scan))) continue; // We've seen this one before. auto __matches = std::__count_if(__first2, __last2, __gnu_cxx::__ops::__iter_comp_iter(__pred, __scan)); if (0 == __matches || std::__count_if(__scan, __last1, __gnu_cxx::__ops::__iter_comp_iter(__pred, __scan)) != __matches) return false; } return true; } /** * @brief Checks whether a permutation of the second sequence is equal * to the first sequence. * @ingroup non_mutating_algorithms * @param __first1 Start of first range. * @param __last1 End of first range. * @param __first2 Start of second range. * @return true if there exists a permutation of the elements in the range * [__first2, __first2 + (__last1 - __first1)), beginning with * ForwardIterator2 begin, such that equal(__first1, __last1, begin) * returns true; otherwise, returns false. */ template<typename _ForwardIterator1, typename _ForwardIterator2> inline bool is_permutation(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>) __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_ForwardIterator1>::value_type, typename iterator_traits<_ForwardIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); return std::__is_permutation(__first1, __last1, __first2, __gnu_cxx::__ops::__iter_equal_to_iter()); } /** * @brief Checks whether a permutation of the second sequence is equal * to the first sequence. * @ingroup non_mutating_algorithms * @param __first1 Start of first range. * @param __last1 End of first range. * @param __first2 Start of second range. * @param __pred A binary predicate. * @return true if there exists a permutation of the elements in * the range [__first2, __first2 + (__last1 - __first1)), * beginning with ForwardIterator2 begin, such that * equal(__first1, __last1, __begin, __pred) returns true; * otherwise, returns false. */ template<typename _ForwardIterator1, typename _ForwardIterator2, typename _BinaryPredicate> inline bool is_permutation(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _BinaryPredicate __pred) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>) __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>) __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator1>::value_type, typename iterator_traits<_ForwardIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); return std::__is_permutation(__first1, __last1, __first2, __gnu_cxx::__ops::__iter_comp_iter(__pred)); } #if __cplusplus > 201103L template<typename _ForwardIterator1, typename _ForwardIterator2, typename _BinaryPredicate> bool __is_permutation(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _BinaryPredicate __pred) { using _Cat1 = typename iterator_traits<_ForwardIterator1>::iterator_category; using _Cat2 = typename iterator_traits<_ForwardIterator2>::iterator_category; using _It1_is_RA = is_same<_Cat1, random_access_iterator_tag>; using _It2_is_RA = is_same<_Cat2, random_access_iterator_tag>; constexpr bool __ra_iters = _It1_is_RA() && _It2_is_RA(); if (__ra_iters) { auto __d1 = std::distance(__first1, __last1); auto __d2 = std::distance(__first2, __last2); if (__d1 != __d2) return false; } // Efficiently compare identical prefixes: O(N) if sequences // have the same elements in the same order. for (; __first1 != __last1 && __first2 != __last2; ++__first1, (void)++__first2) if (!__pred(__first1, __first2)) break; if (__ra_iters) { if (__first1 == __last1) return true; } else { auto __d1 = std::distance(__first1, __last1); auto __d2 = std::distance(__first2, __last2); if (__d1 == 0 && __d2 == 0) return true; if (__d1 != __d2) return false; } for (_ForwardIterator1 __scan = __first1; __scan != __last1; ++__scan) { if (__scan != std::__find_if(__first1, __scan, __gnu_cxx::__ops::__iter_comp_iter(__pred, __scan))) continue; // We've seen this one before. auto __matches = std::__count_if(__first2, __last2, __gnu_cxx::__ops::__iter_comp_iter(__pred, __scan)); if (0 == __matches || std::__count_if(__scan, __last1, __gnu_cxx::__ops::__iter_comp_iter(__pred, __scan)) != __matches) return false; } return true; } /** * @brief Checks whether a permutaion of the second sequence is equal * to the first sequence. * @ingroup non_mutating_algorithms * @param __first1 Start of first range. * @param __last1 End of first range. * @param __first2 Start of second range. * @param __last2 End of first range. * @return true if there exists a permutation of the elements in the range * [__first2, __last2), beginning with ForwardIterator2 begin, * such that equal(__first1, __last1, begin) returns true; * otherwise, returns false. */ template<typename _ForwardIterator1, typename _ForwardIterator2> inline bool is_permutation(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2) { __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); return std::__is_permutation(__first1, __last1, __first2, __last2, __gnu_cxx::__ops::__iter_equal_to_iter()); } /** * @brief Checks whether a permutation of the second sequence is equal * to the first sequence. * @ingroup non_mutating_algorithms * @param __first1 Start of first range. * @param __last1 End of first range. * @param __first2 Start of second range. * @param __last2 End of first range. * @param __pred A binary predicate. * @return true if there exists a permutation of the elements in the range * [__first2, __last2), beginning with ForwardIterator2 begin, * such that equal(__first1, __last1, __begin, __pred) returns true; * otherwise, returns false. */ template<typename _ForwardIterator1, typename _ForwardIterator2, typename _BinaryPredicate> inline bool is_permutation(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _BinaryPredicate __pred) { __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); return std::__is_permutation(__first1, __last1, __first2, __last2, __gnu_cxx::__ops::__iter_comp_iter(__pred)); } #if __cplusplus > 201402L #define __cpp_lib_clamp 201603 /** * @brief Returns the value clamped between lo and hi. * @ingroup sorting_algorithms * @param __val A value of arbitrary type. * @param __lo A lower limit of arbitrary type. * @param __hi An upper limit of arbitrary type. * @return max(__val, __lo) if __val < __hi or min(__val, __hi) otherwise. */ template<typename _Tp> constexpr const _Tp& clamp(const _Tp& __val, const _Tp& __lo, const _Tp& __hi) { __glibcxx_assert(!(__hi < __lo)); return (__val < __lo) ? __lo : (__hi < __val) ? __hi : __val; } /** * @brief Returns the value clamped between lo and hi. * @ingroup sorting_algorithms * @param __val A value of arbitrary type. * @param __lo A lower limit of arbitrary type. * @param __hi An upper limit of arbitrary type. * @param __comp A comparison functor. * @return max(__val, __lo, __comp) if __comp(__val, __hi) * or min(__val, __hi, __comp) otherwise. */ template<typename _Tp, typename _Compare> constexpr const _Tp& clamp(const _Tp& __val, const _Tp& __lo, const _Tp& __hi, _Compare __comp) { __glibcxx_assert(!__comp(__hi, __lo)); return __comp(__val, __lo) ? __lo : __comp(__hi, __val) ? __hi : __val; } #endif // C++17 #endif // C++14 #ifdef _GLIBCXX_USE_C99_STDINT_TR1 /** * @brief Generate two uniformly distributed integers using a * single distribution invocation. * @param __b0 The upper bound for the first integer. * @param __b1 The upper bound for the second integer. * @param __g A UniformRandomBitGenerator. * @return A pair (i, j) with i and j uniformly distributed * over [0, __b0) and [0, __b1), respectively. * * Requires: __b0 * __b1 <= __g.max() - __g.min(). * * Using uniform_int_distribution with a range that is very * small relative to the range of the generator ends up wasting * potentially expensively generated randomness, since * uniform_int_distribution does not store leftover randomness * between invocations. * * If we know we want two integers in ranges that are sufficiently * small, we can compose the ranges, use a single distribution * invocation, and significantly reduce the waste. */ template<typename _IntType, typename _UniformRandomBitGenerator> pair<_IntType, _IntType> __gen_two_uniform_ints(_IntType __b0, _IntType __b1, _UniformRandomBitGenerator&& __g) { _IntType __x = uniform_int_distribution<_IntType>{0, (__b0 * __b1) - 1}(__g); return std::make_pair(__x / __b1, __x % __b1); } /** * @brief Shuffle the elements of a sequence using a uniform random * number generator. * @ingroup mutating_algorithms * @param __first A forward iterator. * @param __last A forward iterator. * @param __g A UniformRandomNumberGenerator (26.5.1.3). * @return Nothing. * * Reorders the elements in the range @p [__first,__last) using @p __g to * provide random numbers. */ template<typename _RandomAccessIterator, typename _UniformRandomNumberGenerator> void shuffle(_RandomAccessIterator __first, _RandomAccessIterator __last, _UniformRandomNumberGenerator&& __g) { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType; typedef typename std::make_unsigned<_DistanceType>::type __ud_type; typedef typename std::uniform_int_distribution<__ud_type> __distr_type; typedef typename __distr_type::param_type __p_type; typedef typename remove_reference<_UniformRandomNumberGenerator>::type _Gen; typedef typename common_type<typename _Gen::result_type, __ud_type>::type __uc_type; const __uc_type __urngrange = __g.max() - __g.min(); const __uc_type __urange = __uc_type(__last - __first); if (__urngrange / __urange >= __urange) // I.e. (__urngrange >= __urange * __urange) but without wrap issues. { _RandomAccessIterator __i = __first + 1; // Since we know the range isn't empty, an even number of elements // means an uneven number of elements /to swap/, in which case we // do the first one up front: if ((__urange % 2) == 0) { __distr_type __d{0, 1}; std::iter_swap(__i++, __first + __d(__g)); } // Now we know that __last - __i is even, so we do the rest in pairs, // using a single distribution invocation to produce swap positions // for two successive elements at a time: while (__i != __last) { const __uc_type __swap_range = __uc_type(__i - __first) + 1; const pair<__uc_type, __uc_type> __pospos = __gen_two_uniform_ints(__swap_range, __swap_range + 1, __g); std::iter_swap(__i++, __first + __pospos.first); std::iter_swap(__i++, __first + __pospos.second); } return; } __distr_type __d; for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i) std::iter_swap(__i, __first + __d(__g, __p_type(0, __i - __first))); } #endif #endif // C++11 _GLIBCXX_BEGIN_NAMESPACE_ALGO /** * @brief Apply a function to every element of a sequence. * @ingroup non_mutating_algorithms * @param __first An input iterator. * @param __last An input iterator. * @param __f A unary function object. * @return @p __f * * Applies the function object @p __f to each element in the range * @p [first,last). @p __f must not modify the order of the sequence. * If @p __f has a return value it is ignored. */ template<typename _InputIterator, typename _Function> _Function for_each(_InputIterator __first, _InputIterator __last, _Function __f) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_requires_valid_range(__first, __last); for (; __first != __last; ++__first) __f(*__first); return __f; // N.B. [alg.foreach] says std::move(f) but it's redundant. } #if __cplusplus >= 201703L /** * @brief Apply a function to every element of a sequence. * @ingroup non_mutating_algorithms * @param __first An input iterator. * @param __n A value convertible to an integer. * @param __f A unary function object. * @return `__first+__n` * * Applies the function object `__f` to each element in the range * `[first, first+n)`. `__f` must not modify the order of the sequence. * If `__f` has a return value it is ignored. */ template<typename _InputIterator, typename _Size, typename _Function> _InputIterator for_each_n(_InputIterator __first, _Size __n, _Function __f) { typename iterator_traits<_InputIterator>::difference_type __n2 = __n; using _Cat = typename iterator_traits<_InputIterator>::iterator_category; if constexpr (is_base_of_v<random_access_iterator_tag, _Cat>) { if (__n2 <= 0) return __first; auto __last = __first + __n2; std::for_each(__first, __last, std::move(__f)); return __last; } else { while (__n2-->0) { __f(*__first); ++__first; } return __first; } } #endif // C++17 /** * @brief Find the first occurrence of a value in a sequence. * @ingroup non_mutating_algorithms * @param __first An input iterator. * @param __last An input iterator. * @param __val The value to find. * @return The first iterator @c i in the range @p [__first,__last) * such that @c *i == @p __val, or @p __last if no such iterator exists. */ template<typename _InputIterator, typename _Tp> inline _InputIterator find(_InputIterator __first, _InputIterator __last, const _Tp& __val) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator>::value_type, _Tp>) __glibcxx_requires_valid_range(__first, __last); return std::__find_if(__first, __last, __gnu_cxx::__ops::__iter_equals_val(__val)); } /** * @brief Find the first element in a sequence for which a * predicate is true. * @ingroup non_mutating_algorithms * @param __first An input iterator. * @param __last An input iterator. * @param __pred A predicate. * @return The first iterator @c i in the range @p [__first,__last) * such that @p __pred(*i) is true, or @p __last if no such iterator exists. */ template<typename _InputIterator, typename _Predicate> inline _InputIterator find_if(_InputIterator __first, _InputIterator __last, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); return std::__find_if(__first, __last, __gnu_cxx::__ops::__pred_iter(__pred)); } /** * @brief Find element from a set in a sequence. * @ingroup non_mutating_algorithms * @param __first1 Start of range to search. * @param __last1 End of range to search. * @param __first2 Start of match candidates. * @param __last2 End of match candidates. * @return The first iterator @c i in the range * @p [__first1,__last1) such that @c *i == @p *(i2) such that i2 is an * iterator in [__first2,__last2), or @p __last1 if no such iterator exists. * * Searches the range @p [__first1,__last1) for an element that is * equal to some element in the range [__first2,__last2). If * found, returns an iterator in the range [__first1,__last1), * otherwise returns @p __last1. */ template<typename _InputIterator, typename _ForwardIterator> _InputIterator find_first_of(_InputIterator __first1, _InputIterator __last1, _ForwardIterator __first2, _ForwardIterator __last2) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); for (; __first1 != __last1; ++__first1) for (_ForwardIterator __iter = __first2; __iter != __last2; ++__iter) if (*__first1 == *__iter) return __first1; return __last1; } /** * @brief Find element from a set in a sequence using a predicate. * @ingroup non_mutating_algorithms * @param __first1 Start of range to search. * @param __last1 End of range to search. * @param __first2 Start of match candidates. * @param __last2 End of match candidates. * @param __comp Predicate to use. * @return The first iterator @c i in the range * @p [__first1,__last1) such that @c comp(*i, @p *(i2)) is true * and i2 is an iterator in [__first2,__last2), or @p __last1 if no * such iterator exists. * * Searches the range @p [__first1,__last1) for an element that is * equal to some element in the range [__first2,__last2). If * found, returns an iterator in the range [__first1,__last1), * otherwise returns @p __last1. */ template<typename _InputIterator, typename _ForwardIterator, typename _BinaryPredicate> _InputIterator find_first_of(_InputIterator __first1, _InputIterator __last1, _ForwardIterator __first2, _ForwardIterator __last2, _BinaryPredicate __comp) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_InputIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); for (; __first1 != __last1; ++__first1) for (_ForwardIterator __iter = __first2; __iter != __last2; ++__iter) if (__comp(*__first1, *__iter)) return __first1; return __last1; } /** * @brief Find two adjacent values in a sequence that are equal. * @ingroup non_mutating_algorithms * @param __first A forward iterator. * @param __last A forward iterator. * @return The first iterator @c i such that @c i and @c i+1 are both * valid iterators in @p [__first,__last) and such that @c *i == @c *(i+1), * or @p __last if no such iterator exists. */ template<typename _ForwardIterator> inline _ForwardIterator adjacent_find(_ForwardIterator __first, _ForwardIterator __last) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_EqualityComparableConcept< typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); return std::__adjacent_find(__first, __last, __gnu_cxx::__ops::__iter_equal_to_iter()); } /** * @brief Find two adjacent values in a sequence using a predicate. * @ingroup non_mutating_algorithms * @param __first A forward iterator. * @param __last A forward iterator. * @param __binary_pred A binary predicate. * @return The first iterator @c i such that @c i and @c i+1 are both * valid iterators in @p [__first,__last) and such that * @p __binary_pred(*i,*(i+1)) is true, or @p __last if no such iterator * exists. */ template<typename _ForwardIterator, typename _BinaryPredicate> inline _ForwardIterator adjacent_find(_ForwardIterator __first, _ForwardIterator __last, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); return std::__adjacent_find(__first, __last, __gnu_cxx::__ops::__iter_comp_iter(__binary_pred)); } /** * @brief Count the number of copies of a value in a sequence. * @ingroup non_mutating_algorithms * @param __first An input iterator. * @param __last An input iterator. * @param __value The value to be counted. * @return The number of iterators @c i in the range @p [__first,__last) * for which @c *i == @p __value */ template<typename _InputIterator, typename _Tp> inline typename iterator_traits<_InputIterator>::difference_type count(_InputIterator __first, _InputIterator __last, const _Tp& __value) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator>::value_type, _Tp>) __glibcxx_requires_valid_range(__first, __last); return std::__count_if(__first, __last, __gnu_cxx::__ops::__iter_equals_val(__value)); } /** * @brief Count the elements of a sequence for which a predicate is true. * @ingroup non_mutating_algorithms * @param __first An input iterator. * @param __last An input iterator. * @param __pred A predicate. * @return The number of iterators @c i in the range @p [__first,__last) * for which @p __pred(*i) is true. */ template<typename _InputIterator, typename _Predicate> inline typename iterator_traits<_InputIterator>::difference_type count_if(_InputIterator __first, _InputIterator __last, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); return std::__count_if(__first, __last, __gnu_cxx::__ops::__pred_iter(__pred)); } /** * @brief Search a sequence for a matching sub-sequence. * @ingroup non_mutating_algorithms * @param __first1 A forward iterator. * @param __last1 A forward iterator. * @param __first2 A forward iterator. * @param __last2 A forward iterator. * @return The first iterator @c i in the range @p * [__first1,__last1-(__last2-__first2)) such that @c *(i+N) == @p * *(__first2+N) for each @c N in the range @p * [0,__last2-__first2), or @p __last1 if no such iterator exists. * * Searches the range @p [__first1,__last1) for a sub-sequence that * compares equal value-by-value with the sequence given by @p * [__first2,__last2) and returns an iterator to the first element * of the sub-sequence, or @p __last1 if the sub-sequence is not * found. * * Because the sub-sequence must lie completely within the range @p * [__first1,__last1) it must start at a position less than @p * __last1-(__last2-__first2) where @p __last2-__first2 is the * length of the sub-sequence. * * This means that the returned iterator @c i will be in the range * @p [__first1,__last1-(__last2-__first2)) */ template<typename _ForwardIterator1, typename _ForwardIterator2> inline _ForwardIterator1 search(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>) __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_ForwardIterator1>::value_type, typename iterator_traits<_ForwardIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); return std::__search(__first1, __last1, __first2, __last2, __gnu_cxx::__ops::__iter_equal_to_iter()); } /** * @brief Search a sequence for a matching sub-sequence using a predicate. * @ingroup non_mutating_algorithms * @param __first1 A forward iterator. * @param __last1 A forward iterator. * @param __first2 A forward iterator. * @param __last2 A forward iterator. * @param __predicate A binary predicate. * @return The first iterator @c i in the range * @p [__first1,__last1-(__last2-__first2)) such that * @p __predicate(*(i+N),*(__first2+N)) is true for each @c N in the range * @p [0,__last2-__first2), or @p __last1 if no such iterator exists. * * Searches the range @p [__first1,__last1) for a sub-sequence that * compares equal value-by-value with the sequence given by @p * [__first2,__last2), using @p __predicate to determine equality, * and returns an iterator to the first element of the * sub-sequence, or @p __last1 if no such iterator exists. * * @see search(_ForwardIter1, _ForwardIter1, _ForwardIter2, _ForwardIter2) */ template<typename _ForwardIterator1, typename _ForwardIterator2, typename _BinaryPredicate> inline _ForwardIterator1 search(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _BinaryPredicate __predicate) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>) __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>) __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator1>::value_type, typename iterator_traits<_ForwardIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); return std::__search(__first1, __last1, __first2, __last2, __gnu_cxx::__ops::__iter_comp_iter(__predicate)); } /** * @brief Search a sequence for a number of consecutive values. * @ingroup non_mutating_algorithms * @param __first A forward iterator. * @param __last A forward iterator. * @param __count The number of consecutive values. * @param __val The value to find. * @return The first iterator @c i in the range @p * [__first,__last-__count) such that @c *(i+N) == @p __val for * each @c N in the range @p [0,__count), or @p __last if no such * iterator exists. * * Searches the range @p [__first,__last) for @p count consecutive elements * equal to @p __val. */ template<typename _ForwardIterator, typename _Integer, typename _Tp> inline _ForwardIterator search_n(_ForwardIterator __first, _ForwardIterator __last, _Integer __count, const _Tp& __val) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_ForwardIterator>::value_type, _Tp>) __glibcxx_requires_valid_range(__first, __last); return std::__search_n(__first, __last, __count, __gnu_cxx::__ops::__iter_equals_val(__val)); } /** * @brief Search a sequence for a number of consecutive values using a * predicate. * @ingroup non_mutating_algorithms * @param __first A forward iterator. * @param __last A forward iterator. * @param __count The number of consecutive values. * @param __val The value to find. * @param __binary_pred A binary predicate. * @return The first iterator @c i in the range @p * [__first,__last-__count) such that @p * __binary_pred(*(i+N),__val) is true for each @c N in the range * @p [0,__count), or @p __last if no such iterator exists. * * Searches the range @p [__first,__last) for @p __count * consecutive elements for which the predicate returns true. */ template<typename _ForwardIterator, typename _Integer, typename _Tp, typename _BinaryPredicate> inline _ForwardIterator search_n(_ForwardIterator __first, _ForwardIterator __last, _Integer __count, const _Tp& __val, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator>::value_type, _Tp>) __glibcxx_requires_valid_range(__first, __last); return std::__search_n(__first, __last, __count, __gnu_cxx::__ops::__iter_comp_val(__binary_pred, __val)); } #if __cplusplus > 201402L /** @brief Search a sequence using a Searcher object. * * @param __first A forward iterator. * @param __last A forward iterator. * @param __searcher A callable object. * @return @p __searcher(__first,__last).first */ template<typename _ForwardIterator, typename _Searcher> inline _ForwardIterator search(_ForwardIterator __first, _ForwardIterator __last, const _Searcher& __searcher) { return __searcher(__first, __last).first; } #endif /** * @brief Perform an operation on a sequence. * @ingroup mutating_algorithms * @param __first An input iterator. * @param __last An input iterator. * @param __result An output iterator. * @param __unary_op A unary operator. * @return An output iterator equal to @p __result+(__last-__first). * * Applies the operator to each element in the input range and assigns * the results to successive elements of the output sequence. * Evaluates @p *(__result+N)=unary_op(*(__first+N)) for each @c N in the * range @p [0,__last-__first). * * @p unary_op must not alter its argument. */ template<typename _InputIterator, typename _OutputIterator, typename _UnaryOperation> _OutputIterator transform(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _UnaryOperation __unary_op) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, // "the type returned by a _UnaryOperation" __typeof__(__unary_op(*__first))>) __glibcxx_requires_valid_range(__first, __last); for (; __first != __last; ++__first, (void)++__result) *__result = __unary_op(*__first); return __result; } /** * @brief Perform an operation on corresponding elements of two sequences. * @ingroup mutating_algorithms * @param __first1 An input iterator. * @param __last1 An input iterator. * @param __first2 An input iterator. * @param __result An output iterator. * @param __binary_op A binary operator. * @return An output iterator equal to @p result+(last-first). * * Applies the operator to the corresponding elements in the two * input ranges and assigns the results to successive elements of the * output sequence. * Evaluates @p * *(__result+N)=__binary_op(*(__first1+N),*(__first2+N)) for each * @c N in the range @p [0,__last1-__first1). * * @p binary_op must not alter either of its arguments. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator, typename _BinaryOperation> _OutputIterator transform(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _OutputIterator __result, _BinaryOperation __binary_op) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, // "the type returned by a _BinaryOperation" __typeof__(__binary_op(*__first1,*__first2))>) __glibcxx_requires_valid_range(__first1, __last1); for (; __first1 != __last1; ++__first1, (void)++__first2, ++__result) *__result = __binary_op(*__first1, *__first2); return __result; } /** * @brief Replace each occurrence of one value in a sequence with another * value. * @ingroup mutating_algorithms * @param __first A forward iterator. * @param __last A forward iterator. * @param __old_value The value to be replaced. * @param __new_value The replacement value. * @return replace() returns no value. * * For each iterator @c i in the range @p [__first,__last) if @c *i == * @p __old_value then the assignment @c *i = @p __new_value is performed. */ template<typename _ForwardIterator, typename _Tp> void replace(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __old_value, const _Tp& __new_value) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_ForwardIterator>::value_type, _Tp>) __glibcxx_function_requires(_ConvertibleConcept<_Tp, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); for (; __first != __last; ++__first) if (*__first == __old_value) *__first = __new_value; } /** * @brief Replace each value in a sequence for which a predicate returns * true with another value. * @ingroup mutating_algorithms * @param __first A forward iterator. * @param __last A forward iterator. * @param __pred A predicate. * @param __new_value The replacement value. * @return replace_if() returns no value. * * For each iterator @c i in the range @p [__first,__last) if @p __pred(*i) * is true then the assignment @c *i = @p __new_value is performed. */ template<typename _ForwardIterator, typename _Predicate, typename _Tp> void replace_if(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, const _Tp& __new_value) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_ConvertibleConcept<_Tp, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); for (; __first != __last; ++__first) if (__pred(*__first)) *__first = __new_value; } /** * @brief Assign the result of a function object to each value in a * sequence. * @ingroup mutating_algorithms * @param __first A forward iterator. * @param __last A forward iterator. * @param __gen A function object taking no arguments and returning * std::iterator_traits<_ForwardIterator>::value_type * @return generate() returns no value. * * Performs the assignment @c *i = @p __gen() for each @c i in the range * @p [__first,__last). */ template<typename _ForwardIterator, typename _Generator> void generate(_ForwardIterator __first, _ForwardIterator __last, _Generator __gen) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_GeneratorConcept<_Generator, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); for (; __first != __last; ++__first) *__first = __gen(); } /** * @brief Assign the result of a function object to each value in a * sequence. * @ingroup mutating_algorithms * @param __first A forward iterator. * @param __n The length of the sequence. * @param __gen A function object taking no arguments and returning * std::iterator_traits<_ForwardIterator>::value_type * @return The end of the sequence, @p __first+__n * * Performs the assignment @c *i = @p __gen() for each @c i in the range * @p [__first,__first+__n). * * _GLIBCXX_RESOLVE_LIB_DEFECTS * DR 865. More algorithms that throw away information */ template<typename _OutputIterator, typename _Size, typename _Generator> _OutputIterator generate_n(_OutputIterator __first, _Size __n, _Generator __gen) { // concept requirements __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, // "the type returned by a _Generator" __typeof__(__gen())>) for (__decltype(__n + 0) __niter = __n; __niter > 0; --__niter, (void) ++__first) *__first = __gen(); return __first; } /** * @brief Copy a sequence, removing consecutive duplicate values. * @ingroup mutating_algorithms * @param __first An input iterator. * @param __last An input iterator. * @param __result An output iterator. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [__first,__last) to the range * beginning at @p __result, except that only the first element is copied * from groups of consecutive elements that compare equal. * unique_copy() is stable, so the relative order of elements that are * copied is unchanged. * * _GLIBCXX_RESOLVE_LIB_DEFECTS * DR 241. Does unique_copy() require CopyConstructible and Assignable? * * _GLIBCXX_RESOLVE_LIB_DEFECTS * DR 538. 241 again: Does unique_copy() require CopyConstructible and * Assignable? */ template<typename _InputIterator, typename _OutputIterator> inline _OutputIterator unique_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_function_requires(_EqualityComparableConcept< typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __result; return std::__unique_copy(__first, __last, __result, __gnu_cxx::__ops::__iter_equal_to_iter(), std::__iterator_category(__first), std::__iterator_category(__result)); } /** * @brief Copy a sequence, removing consecutive values using a predicate. * @ingroup mutating_algorithms * @param __first An input iterator. * @param __last An input iterator. * @param __result An output iterator. * @param __binary_pred A binary predicate. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [__first,__last) to the range * beginning at @p __result, except that only the first element is copied * from groups of consecutive elements for which @p __binary_pred returns * true. * unique_copy() is stable, so the relative order of elements that are * copied is unchanged. * * _GLIBCXX_RESOLVE_LIB_DEFECTS * DR 241. Does unique_copy() require CopyConstructible and Assignable? */ template<typename _InputIterator, typename _OutputIterator, typename _BinaryPredicate> inline _OutputIterator unique_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _BinaryPredicate __binary_pred) { // concept requirements -- predicates checked later __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __result; return std::__unique_copy(__first, __last, __result, __gnu_cxx::__ops::__iter_comp_iter(__binary_pred), std::__iterator_category(__first), std::__iterator_category(__result)); } #if _GLIBCXX_HOSTED /** * @brief Randomly shuffle the elements of a sequence. * @ingroup mutating_algorithms * @param __first A forward iterator. * @param __last A forward iterator. * @return Nothing. * * Reorder the elements in the range @p [__first,__last) using a random * distribution, so that every possible ordering of the sequence is * equally likely. */ template<typename _RandomAccessIterator> inline void random_shuffle(_RandomAccessIterator __first, _RandomAccessIterator __last) { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_requires_valid_range(__first, __last); if (__first != __last) for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i) { // XXX rand() % N is not uniformly distributed _RandomAccessIterator __j = __first + std::rand() % ((__i - __first) + 1); if (__i != __j) std::iter_swap(__i, __j); } } #endif /** * @brief Shuffle the elements of a sequence using a random number * generator. * @ingroup mutating_algorithms * @param __first A forward iterator. * @param __last A forward iterator. * @param __rand The RNG functor or function. * @return Nothing. * * Reorders the elements in the range @p [__first,__last) using @p __rand to * provide a random distribution. Calling @p __rand(N) for a positive * integer @p N should return a randomly chosen integer from the * range [0,N). */ template<typename _RandomAccessIterator, typename _RandomNumberGenerator> void random_shuffle(_RandomAccessIterator __first, _RandomAccessIterator __last, #if __cplusplus >= 201103L _RandomNumberGenerator&& __rand) #else _RandomNumberGenerator& __rand) #endif { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return; for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i) { _RandomAccessIterator __j = __first + __rand((__i - __first) + 1); if (__i != __j) std::iter_swap(__i, __j); } } /** * @brief Move elements for which a predicate is true to the beginning * of a sequence. * @ingroup mutating_algorithms * @param __first A forward iterator. * @param __last A forward iterator. * @param __pred A predicate functor. * @return An iterator @p middle such that @p __pred(i) is true for each * iterator @p i in the range @p [__first,middle) and false for each @p i * in the range @p [middle,__last). * * @p __pred must not modify its operand. @p partition() does not preserve * the relative ordering of elements in each group, use * @p stable_partition() if this is needed. */ template<typename _ForwardIterator, typename _Predicate> inline _ForwardIterator partition(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); return std::__partition(__first, __last, __pred, std::__iterator_category(__first)); } /** * @brief Sort the smallest elements of a sequence. * @ingroup sorting_algorithms * @param __first An iterator. * @param __middle Another iterator. * @param __last Another iterator. * @return Nothing. * * Sorts the smallest @p (__middle-__first) elements in the range * @p [first,last) and moves them to the range @p [__first,__middle). The * order of the remaining elements in the range @p [__middle,__last) is * undefined. * After the sort if @e i and @e j are iterators in the range * @p [__first,__middle) such that i precedes j and @e k is an iterator in * the range @p [__middle,__last) then *j<*i and *k<*i are both false. */ template<typename _RandomAccessIterator> inline void partial_sort(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last) { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_RandomAccessIterator>::value_type>) __glibcxx_requires_valid_range(__first, __middle); __glibcxx_requires_valid_range(__middle, __last); __glibcxx_requires_irreflexive(__first, __last); std::__partial_sort(__first, __middle, __last, __gnu_cxx::__ops::__iter_less_iter()); } /** * @brief Sort the smallest elements of a sequence using a predicate * for comparison. * @ingroup sorting_algorithms * @param __first An iterator. * @param __middle Another iterator. * @param __last Another iterator. * @param __comp A comparison functor. * @return Nothing. * * Sorts the smallest @p (__middle-__first) elements in the range * @p [__first,__last) and moves them to the range @p [__first,__middle). The * order of the remaining elements in the range @p [__middle,__last) is * undefined. * After the sort if @e i and @e j are iterators in the range * @p [__first,__middle) such that i precedes j and @e k is an iterator in * the range @p [__middle,__last) then @p *__comp(j,*i) and @p __comp(*k,*i) * are both false. */ template<typename _RandomAccessIterator, typename _Compare> inline void partial_sort(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last, _Compare __comp) { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_RandomAccessIterator>::value_type, typename iterator_traits<_RandomAccessIterator>::value_type>) __glibcxx_requires_valid_range(__first, __middle); __glibcxx_requires_valid_range(__middle, __last); __glibcxx_requires_irreflexive_pred(__first, __last, __comp); std::__partial_sort(__first, __middle, __last, __gnu_cxx::__ops::__iter_comp_iter(__comp)); } /** * @brief Sort a sequence just enough to find a particular position. * @ingroup sorting_algorithms * @param __first An iterator. * @param __nth Another iterator. * @param __last Another iterator. * @return Nothing. * * Rearranges the elements in the range @p [__first,__last) so that @p *__nth * is the same element that would have been in that position had the * whole sequence been sorted. The elements either side of @p *__nth are * not completely sorted, but for any iterator @e i in the range * @p [__first,__nth) and any iterator @e j in the range @p [__nth,__last) it * holds that *j < *i is false. */ template<typename _RandomAccessIterator> inline void nth_element(_RandomAccessIterator __first, _RandomAccessIterator __nth, _RandomAccessIterator __last) { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_RandomAccessIterator>::value_type>) __glibcxx_requires_valid_range(__first, __nth); __glibcxx_requires_valid_range(__nth, __last); __glibcxx_requires_irreflexive(__first, __last); if (__first == __last || __nth == __last) return; std::__introselect(__first, __nth, __last, std::__lg(__last - __first) * 2, __gnu_cxx::__ops::__iter_less_iter()); } /** * @brief Sort a sequence just enough to find a particular position * using a predicate for comparison. * @ingroup sorting_algorithms * @param __first An iterator. * @param __nth Another iterator. * @param __last Another iterator. * @param __comp A comparison functor. * @return Nothing. * * Rearranges the elements in the range @p [__first,__last) so that @p *__nth * is the same element that would have been in that position had the * whole sequence been sorted. The elements either side of @p *__nth are * not completely sorted, but for any iterator @e i in the range * @p [__first,__nth) and any iterator @e j in the range @p [__nth,__last) it * holds that @p __comp(*j,*i) is false. */ template<typename _RandomAccessIterator, typename _Compare> inline void nth_element(_RandomAccessIterator __first, _RandomAccessIterator __nth, _RandomAccessIterator __last, _Compare __comp) { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_RandomAccessIterator>::value_type, typename iterator_traits<_RandomAccessIterator>::value_type>) __glibcxx_requires_valid_range(__first, __nth); __glibcxx_requires_valid_range(__nth, __last); __glibcxx_requires_irreflexive_pred(__first, __last, __comp); if (__first == __last || __nth == __last) return; std::__introselect(__first, __nth, __last, std::__lg(__last - __first) * 2, __gnu_cxx::__ops::__iter_comp_iter(__comp)); } /** * @brief Sort the elements of a sequence. * @ingroup sorting_algorithms * @param __first An iterator. * @param __last Another iterator. * @return Nothing. * * Sorts the elements in the range @p [__first,__last) in ascending order, * such that for each iterator @e i in the range @p [__first,__last-1), * *(i+1)<*i is false. * * The relative ordering of equivalent elements is not preserved, use * @p stable_sort() if this is needed. */ template<typename _RandomAccessIterator> inline void sort(_RandomAccessIterator __first, _RandomAccessIterator __last) { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_RandomAccessIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_irreflexive(__first, __last); std::__sort(__first, __last, __gnu_cxx::__ops::__iter_less_iter()); } /** * @brief Sort the elements of a sequence using a predicate for comparison. * @ingroup sorting_algorithms * @param __first An iterator. * @param __last Another iterator. * @param __comp A comparison functor. * @return Nothing. * * Sorts the elements in the range @p [__first,__last) in ascending order, * such that @p __comp(*(i+1),*i) is false for every iterator @e i in the * range @p [__first,__last-1). * * The relative ordering of equivalent elements is not preserved, use * @p stable_sort() if this is needed. */ template<typename _RandomAccessIterator, typename _Compare> inline void sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_RandomAccessIterator>::value_type, typename iterator_traits<_RandomAccessIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_irreflexive_pred(__first, __last, __comp); std::__sort(__first, __last, __gnu_cxx::__ops::__iter_comp_iter(__comp)); } template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator, typename _Compare> _OutputIterator __merge(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { while (__first1 != __last1 && __first2 != __last2) { if (__comp(__first2, __first1)) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; } ++__result; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); } /** * @brief Merges two sorted ranges. * @ingroup sorting_algorithms * @param __first1 An iterator. * @param __first2 Another iterator. * @param __last1 Another iterator. * @param __last2 Another iterator. * @param __result An iterator pointing to the end of the merged range. * @return An iterator pointing to the first element <em>not less * than</em> @e val. * * Merges the ranges @p [__first1,__last1) and @p [__first2,__last2) into * the sorted range @p [__result, __result + (__last1-__first1) + * (__last2-__first2)). Both input ranges must be sorted, and the * output range must not overlap with either of the input ranges. * The sort is @e stable, that is, for equivalent elements in the * two ranges, elements from the first range will always come * before elements from the second. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator> inline _OutputIterator merge(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_function_requires(_LessThanOpConcept< typename iterator_traits<_InputIterator2>::value_type, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_requires_sorted_set(__first1, __last1, __first2); __glibcxx_requires_sorted_set(__first2, __last2, __first1); __glibcxx_requires_irreflexive2(__first1, __last1); __glibcxx_requires_irreflexive2(__first2, __last2); return _GLIBCXX_STD_A::__merge(__first1, __last1, __first2, __last2, __result, __gnu_cxx::__ops::__iter_less_iter()); } /** * @brief Merges two sorted ranges. * @ingroup sorting_algorithms * @param __first1 An iterator. * @param __first2 Another iterator. * @param __last1 Another iterator. * @param __last2 Another iterator. * @param __result An iterator pointing to the end of the merged range. * @param __comp A functor to use for comparisons. * @return An iterator pointing to the first element "not less * than" @e val. * * Merges the ranges @p [__first1,__last1) and @p [__first2,__last2) into * the sorted range @p [__result, __result + (__last1-__first1) + * (__last2-__first2)). Both input ranges must be sorted, and the * output range must not overlap with either of the input ranges. * The sort is @e stable, that is, for equivalent elements in the * two ranges, elements from the first range will always come * before elements from the second. * * The comparison function should have the same effects on ordering as * the function used for the initial sort. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator, typename _Compare> inline _OutputIterator merge(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_InputIterator2>::value_type, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_requires_sorted_set_pred(__first1, __last1, __first2, __comp); __glibcxx_requires_sorted_set_pred(__first2, __last2, __first1, __comp); __glibcxx_requires_irreflexive_pred2(__first1, __last1, __comp); __glibcxx_requires_irreflexive_pred2(__first2, __last2, __comp); return _GLIBCXX_STD_A::__merge(__first1, __last1, __first2, __last2, __result, __gnu_cxx::__ops::__iter_comp_iter(__comp)); } template<typename _RandomAccessIterator, typename _Compare> inline void __stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType; typedef _Temporary_buffer<_RandomAccessIterator, _ValueType> _TmpBuf; _TmpBuf __buf(__first, std::distance(__first, __last)); if (__buf.begin() == 0) std::__inplace_stable_sort(__first, __last, __comp); else std::__stable_sort_adaptive(__first, __last, __buf.begin(), _DistanceType(__buf.size()), __comp); } /** * @brief Sort the elements of a sequence, preserving the relative order * of equivalent elements. * @ingroup sorting_algorithms * @param __first An iterator. * @param __last Another iterator. * @return Nothing. * * Sorts the elements in the range @p [__first,__last) in ascending order, * such that for each iterator @p i in the range @p [__first,__last-1), * @p *(i+1)<*i is false. * * The relative ordering of equivalent elements is preserved, so any two * elements @p x and @p y in the range @p [__first,__last) such that * @p x<y is false and @p y<x is false will have the same relative * ordering after calling @p stable_sort(). */ template<typename _RandomAccessIterator> inline void stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last) { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_RandomAccessIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_irreflexive(__first, __last); _GLIBCXX_STD_A::__stable_sort(__first, __last, __gnu_cxx::__ops::__iter_less_iter()); } /** * @brief Sort the elements of a sequence using a predicate for comparison, * preserving the relative order of equivalent elements. * @ingroup sorting_algorithms * @param __first An iterator. * @param __last Another iterator. * @param __comp A comparison functor. * @return Nothing. * * Sorts the elements in the range @p [__first,__last) in ascending order, * such that for each iterator @p i in the range @p [__first,__last-1), * @p __comp(*(i+1),*i) is false. * * The relative ordering of equivalent elements is preserved, so any two * elements @p x and @p y in the range @p [__first,__last) such that * @p __comp(x,y) is false and @p __comp(y,x) is false will have the same * relative ordering after calling @p stable_sort(). */ template<typename _RandomAccessIterator, typename _Compare> inline void stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_RandomAccessIterator>::value_type, typename iterator_traits<_RandomAccessIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_irreflexive_pred(__first, __last, __comp); _GLIBCXX_STD_A::__stable_sort(__first, __last, __gnu_cxx::__ops::__iter_comp_iter(__comp)); } template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator, typename _Compare> _OutputIterator __set_union(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { while (__first1 != __last1 && __first2 != __last2) { if (__comp(__first1, __first2)) { *__result = *__first1; ++__first1; } else if (__comp(__first2, __first1)) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; ++__first2; } ++__result; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); } /** * @brief Return the union of two sorted ranges. * @ingroup set_algorithms * @param __first1 Start of first range. * @param __last1 End of first range. * @param __first2 Start of second range. * @param __last2 End of second range. * @param __result Start of output range. * @return End of the output range. * @ingroup set_algorithms * * This operation iterates over both ranges, copying elements present in * each range in order to the output range. Iterators increment for each * range. When the current element of one range is less than the other, * that element is copied and the iterator advanced. If an element is * contained in both ranges, the element from the first range is copied and * both ranges advance. The output range may not overlap either input * range. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator> inline _OutputIterator set_union(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_function_requires(_LessThanOpConcept< typename iterator_traits<_InputIterator1>::value_type, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_function_requires(_LessThanOpConcept< typename iterator_traits<_InputIterator2>::value_type, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_requires_sorted_set(__first1, __last1, __first2); __glibcxx_requires_sorted_set(__first2, __last2, __first1); __glibcxx_requires_irreflexive2(__first1, __last1); __glibcxx_requires_irreflexive2(__first2, __last2); return _GLIBCXX_STD_A::__set_union(__first1, __last1, __first2, __last2, __result, __gnu_cxx::__ops::__iter_less_iter()); } /** * @brief Return the union of two sorted ranges using a comparison functor. * @ingroup set_algorithms * @param __first1 Start of first range. * @param __last1 End of first range. * @param __first2 Start of second range. * @param __last2 End of second range. * @param __result Start of output range. * @param __comp The comparison functor. * @return End of the output range. * @ingroup set_algorithms * * This operation iterates over both ranges, copying elements present in * each range in order to the output range. Iterators increment for each * range. When the current element of one range is less than the other * according to @p __comp, that element is copied and the iterator advanced. * If an equivalent element according to @p __comp is contained in both * ranges, the element from the first range is copied and both ranges * advance. The output range may not overlap either input range. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator, typename _Compare> inline _OutputIterator set_union(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_InputIterator1>::value_type, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_InputIterator2>::value_type, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_requires_sorted_set_pred(__first1, __last1, __first2, __comp); __glibcxx_requires_sorted_set_pred(__first2, __last2, __first1, __comp); __glibcxx_requires_irreflexive_pred2(__first1, __last1, __comp); __glibcxx_requires_irreflexive_pred2(__first2, __last2, __comp); return _GLIBCXX_STD_A::__set_union(__first1, __last1, __first2, __last2, __result, __gnu_cxx::__ops::__iter_comp_iter(__comp)); } template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator, typename _Compare> _OutputIterator __set_intersection(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { while (__first1 != __last1 && __first2 != __last2) if (__comp(__first1, __first2)) ++__first1; else if (__comp(__first2, __first1)) ++__first2; else { *__result = *__first1; ++__first1; ++__first2; ++__result; } return __result; } /** * @brief Return the intersection of two sorted ranges. * @ingroup set_algorithms * @param __first1 Start of first range. * @param __last1 End of first range. * @param __first2 Start of second range. * @param __last2 End of second range. * @param __result Start of output range. * @return End of the output range. * @ingroup set_algorithms * * This operation iterates over both ranges, copying elements present in * both ranges in order to the output range. Iterators increment for each * range. When the current element of one range is less than the other, * that iterator advances. If an element is contained in both ranges, the * element from the first range is copied and both ranges advance. The * output range may not overlap either input range. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator> inline _OutputIterator set_intersection(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_function_requires(_LessThanOpConcept< typename iterator_traits<_InputIterator1>::value_type, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_function_requires(_LessThanOpConcept< typename iterator_traits<_InputIterator2>::value_type, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_requires_sorted_set(__first1, __last1, __first2); __glibcxx_requires_sorted_set(__first2, __last2, __first1); __glibcxx_requires_irreflexive2(__first1, __last1); __glibcxx_requires_irreflexive2(__first2, __last2); return _GLIBCXX_STD_A::__set_intersection(__first1, __last1, __first2, __last2, __result, __gnu_cxx::__ops::__iter_less_iter()); } /** * @brief Return the intersection of two sorted ranges using comparison * functor. * @ingroup set_algorithms * @param __first1 Start of first range. * @param __last1 End of first range. * @param __first2 Start of second range. * @param __last2 End of second range. * @param __result Start of output range. * @param __comp The comparison functor. * @return End of the output range. * @ingroup set_algorithms * * This operation iterates over both ranges, copying elements present in * both ranges in order to the output range. Iterators increment for each * range. When the current element of one range is less than the other * according to @p __comp, that iterator advances. If an element is * contained in both ranges according to @p __comp, the element from the * first range is copied and both ranges advance. The output range may not * overlap either input range. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator, typename _Compare> inline _OutputIterator set_intersection(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_InputIterator1>::value_type, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_InputIterator2>::value_type, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_requires_sorted_set_pred(__first1, __last1, __first2, __comp); __glibcxx_requires_sorted_set_pred(__first2, __last2, __first1, __comp); __glibcxx_requires_irreflexive_pred2(__first1, __last1, __comp); __glibcxx_requires_irreflexive_pred2(__first2, __last2, __comp); return _GLIBCXX_STD_A::__set_intersection(__first1, __last1, __first2, __last2, __result, __gnu_cxx::__ops::__iter_comp_iter(__comp)); } template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator, typename _Compare> _OutputIterator __set_difference(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { while (__first1 != __last1 && __first2 != __last2) if (__comp(__first1, __first2)) { *__result = *__first1; ++__first1; ++__result; } else if (__comp(__first2, __first1)) ++__first2; else { ++__first1; ++__first2; } return std::copy(__first1, __last1, __result); } /** * @brief Return the difference of two sorted ranges. * @ingroup set_algorithms * @param __first1 Start of first range. * @param __last1 End of first range. * @param __first2 Start of second range. * @param __last2 End of second range. * @param __result Start of output range. * @return End of the output range. * @ingroup set_algorithms * * This operation iterates over both ranges, copying elements present in * the first range but not the second in order to the output range. * Iterators increment for each range. When the current element of the * first range is less than the second, that element is copied and the * iterator advances. If the current element of the second range is less, * the iterator advances, but no element is copied. If an element is * contained in both ranges, no elements are copied and both ranges * advance. The output range may not overlap either input range. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator> inline _OutputIterator set_difference(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_function_requires(_LessThanOpConcept< typename iterator_traits<_InputIterator1>::value_type, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_function_requires(_LessThanOpConcept< typename iterator_traits<_InputIterator2>::value_type, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_requires_sorted_set(__first1, __last1, __first2); __glibcxx_requires_sorted_set(__first2, __last2, __first1); __glibcxx_requires_irreflexive2(__first1, __last1); __glibcxx_requires_irreflexive2(__first2, __last2); return _GLIBCXX_STD_A::__set_difference(__first1, __last1, __first2, __last2, __result, __gnu_cxx::__ops::__iter_less_iter()); } /** * @brief Return the difference of two sorted ranges using comparison * functor. * @ingroup set_algorithms * @param __first1 Start of first range. * @param __last1 End of first range. * @param __first2 Start of second range. * @param __last2 End of second range. * @param __result Start of output range. * @param __comp The comparison functor. * @return End of the output range. * @ingroup set_algorithms * * This operation iterates over both ranges, copying elements present in * the first range but not the second in order to the output range. * Iterators increment for each range. When the current element of the * first range is less than the second according to @p __comp, that element * is copied and the iterator advances. If the current element of the * second range is less, no element is copied and the iterator advances. * If an element is contained in both ranges according to @p __comp, no * elements are copied and both ranges advance. The output range may not * overlap either input range. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator, typename _Compare> inline _OutputIterator set_difference(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_InputIterator1>::value_type, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_InputIterator2>::value_type, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_requires_sorted_set_pred(__first1, __last1, __first2, __comp); __glibcxx_requires_sorted_set_pred(__first2, __last2, __first1, __comp); __glibcxx_requires_irreflexive_pred2(__first1, __last1, __comp); __glibcxx_requires_irreflexive_pred2(__first2, __last2, __comp); return _GLIBCXX_STD_A::__set_difference(__first1, __last1, __first2, __last2, __result, __gnu_cxx::__ops::__iter_comp_iter(__comp)); } template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator, typename _Compare> _OutputIterator __set_symmetric_difference(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { while (__first1 != __last1 && __first2 != __last2) if (__comp(__first1, __first2)) { *__result = *__first1; ++__first1; ++__result; } else if (__comp(__first2, __first1)) { *__result = *__first2; ++__first2; ++__result; } else { ++__first1; ++__first2; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); } /** * @brief Return the symmetric difference of two sorted ranges. * @ingroup set_algorithms * @param __first1 Start of first range. * @param __last1 End of first range. * @param __first2 Start of second range. * @param __last2 End of second range. * @param __result Start of output range. * @return End of the output range. * @ingroup set_algorithms * * This operation iterates over both ranges, copying elements present in * one range but not the other in order to the output range. Iterators * increment for each range. When the current element of one range is less * than the other, that element is copied and the iterator advances. If an * element is contained in both ranges, no elements are copied and both * ranges advance. The output range may not overlap either input range. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator> inline _OutputIterator set_symmetric_difference(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_function_requires(_LessThanOpConcept< typename iterator_traits<_InputIterator1>::value_type, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_function_requires(_LessThanOpConcept< typename iterator_traits<_InputIterator2>::value_type, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_requires_sorted_set(__first1, __last1, __first2); __glibcxx_requires_sorted_set(__first2, __last2, __first1); __glibcxx_requires_irreflexive2(__first1, __last1); __glibcxx_requires_irreflexive2(__first2, __last2); return _GLIBCXX_STD_A::__set_symmetric_difference(__first1, __last1, __first2, __last2, __result, __gnu_cxx::__ops::__iter_less_iter()); } /** * @brief Return the symmetric difference of two sorted ranges using * comparison functor. * @ingroup set_algorithms * @param __first1 Start of first range. * @param __last1 End of first range. * @param __first2 Start of second range. * @param __last2 End of second range. * @param __result Start of output range. * @param __comp The comparison functor. * @return End of the output range. * @ingroup set_algorithms * * This operation iterates over both ranges, copying elements present in * one range but not the other in order to the output range. Iterators * increment for each range. When the current element of one range is less * than the other according to @p comp, that element is copied and the * iterator advances. If an element is contained in both ranges according * to @p __comp, no elements are copied and both ranges advance. The output * range may not overlap either input range. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator, typename _Compare> inline _OutputIterator set_symmetric_difference(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_InputIterator1>::value_type, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_InputIterator2>::value_type, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_requires_sorted_set_pred(__first1, __last1, __first2, __comp); __glibcxx_requires_sorted_set_pred(__first2, __last2, __first1, __comp); __glibcxx_requires_irreflexive_pred2(__first1, __last1, __comp); __glibcxx_requires_irreflexive_pred2(__first2, __last2, __comp); return _GLIBCXX_STD_A::__set_symmetric_difference(__first1, __last1, __first2, __last2, __result, __gnu_cxx::__ops::__iter_comp_iter(__comp)); } template<typename _ForwardIterator, typename _Compare> _GLIBCXX14_CONSTEXPR _ForwardIterator __min_element(_ForwardIterator __first, _ForwardIterator __last, _Compare __comp) { if (__first == __last) return __first; _ForwardIterator __result = __first; while (++__first != __last) if (__comp(__first, __result)) __result = __first; return __result; } /** * @brief Return the minimum element in a range. * @ingroup sorting_algorithms * @param __first Start of range. * @param __last End of range. * @return Iterator referencing the first instance of the smallest value. */ template<typename _ForwardIterator> _GLIBCXX14_CONSTEXPR _ForwardIterator inline min_element(_ForwardIterator __first, _ForwardIterator __last) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_irreflexive(__first, __last); return _GLIBCXX_STD_A::__min_element(__first, __last, __gnu_cxx::__ops::__iter_less_iter()); } /** * @brief Return the minimum element in a range using comparison functor. * @ingroup sorting_algorithms * @param __first Start of range. * @param __last End of range. * @param __comp Comparison functor. * @return Iterator referencing the first instance of the smallest value * according to __comp. */ template<typename _ForwardIterator, typename _Compare> _GLIBCXX14_CONSTEXPR inline _ForwardIterator min_element(_ForwardIterator __first, _ForwardIterator __last, _Compare __comp) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_irreflexive_pred(__first, __last, __comp); return _GLIBCXX_STD_A::__min_element(__first, __last, __gnu_cxx::__ops::__iter_comp_iter(__comp)); } template<typename _ForwardIterator, typename _Compare> _GLIBCXX14_CONSTEXPR _ForwardIterator __max_element(_ForwardIterator __first, _ForwardIterator __last, _Compare __comp) { if (__first == __last) return __first; _ForwardIterator __result = __first; while (++__first != __last) if (__comp(__result, __first)) __result = __first; return __result; } /** * @brief Return the maximum element in a range. * @ingroup sorting_algorithms * @param __first Start of range. * @param __last End of range. * @return Iterator referencing the first instance of the largest value. */ template<typename _ForwardIterator> _GLIBCXX14_CONSTEXPR inline _ForwardIterator max_element(_ForwardIterator __first, _ForwardIterator __last) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_irreflexive(__first, __last); return _GLIBCXX_STD_A::__max_element(__first, __last, __gnu_cxx::__ops::__iter_less_iter()); } /** * @brief Return the maximum element in a range using comparison functor. * @ingroup sorting_algorithms * @param __first Start of range. * @param __last End of range. * @param __comp Comparison functor. * @return Iterator referencing the first instance of the largest value * according to __comp. */ template<typename _ForwardIterator, typename _Compare> _GLIBCXX14_CONSTEXPR inline _ForwardIterator max_element(_ForwardIterator __first, _ForwardIterator __last, _Compare __comp) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_irreflexive_pred(__first, __last, __comp); return _GLIBCXX_STD_A::__max_element(__first, __last, __gnu_cxx::__ops::__iter_comp_iter(__comp)); } #if __cplusplus >= 201402L /// Reservoir sampling algorithm. template<typename _InputIterator, typename _RandomAccessIterator, typename _Size, typename _UniformRandomBitGenerator> _RandomAccessIterator __sample(_InputIterator __first, _InputIterator __last, input_iterator_tag, _RandomAccessIterator __out, random_access_iterator_tag, _Size __n, _UniformRandomBitGenerator&& __g) { using __distrib_type = uniform_int_distribution<_Size>; using __param_type = typename __distrib_type::param_type; __distrib_type __d{}; _Size __sample_sz = 0; while (__first != __last && __sample_sz != __n) { __out[__sample_sz++] = *__first; ++__first; } for (auto __pop_sz = __sample_sz; __first != __last; ++__first, (void) ++__pop_sz) { const auto __k = __d(__g, __param_type{0, __pop_sz}); if (__k < __n) __out[__k] = *__first; } return __out + __sample_sz; } /// Selection sampling algorithm. template<typename _ForwardIterator, typename _OutputIterator, typename _Cat, typename _Size, typename _UniformRandomBitGenerator> _OutputIterator __sample(_ForwardIterator __first, _ForwardIterator __last, forward_iterator_tag, _OutputIterator __out, _Cat, _Size __n, _UniformRandomBitGenerator&& __g) { using __distrib_type = uniform_int_distribution<_Size>; using __param_type = typename __distrib_type::param_type; using _USize = make_unsigned_t<_Size>; using _Gen = remove_reference_t<_UniformRandomBitGenerator>; using __uc_type = common_type_t<typename _Gen::result_type, _USize>; if (__first == __last) return __out; __distrib_type __d{}; _Size __unsampled_sz = std::distance(__first, __last); __n = std::min(__n, __unsampled_sz); // If possible, we use __gen_two_uniform_ints to efficiently produce // two random numbers using a single distribution invocation: const __uc_type __urngrange = __g.max() - __g.min(); if (__urngrange / __uc_type(__unsampled_sz) >= __uc_type(__unsampled_sz)) // I.e. (__urngrange >= __unsampled_sz * __unsampled_sz) but without // wrapping issues. { while (__n != 0 && __unsampled_sz >= 2) { const pair<_Size, _Size> __p = __gen_two_uniform_ints(__unsampled_sz, __unsampled_sz - 1, __g); --__unsampled_sz; if (__p.first < __n) { *__out++ = *__first; --__n; } ++__first; if (__n == 0) break; --__unsampled_sz; if (__p.second < __n) { *__out++ = *__first; --__n; } ++__first; } } // The loop above is otherwise equivalent to this one-at-a-time version: for (; __n != 0; ++__first) if (__d(__g, __param_type{0, --__unsampled_sz}) < __n) { *__out++ = *__first; --__n; } return __out; } #if __cplusplus > 201402L #define __cpp_lib_sample 201603 /// Take a random sample from a population. template<typename _PopulationIterator, typename _SampleIterator, typename _Distance, typename _UniformRandomBitGenerator> _SampleIterator sample(_PopulationIterator __first, _PopulationIterator __last, _SampleIterator __out, _Distance __n, _UniformRandomBitGenerator&& __g) { using __pop_cat = typename std::iterator_traits<_PopulationIterator>::iterator_category; using __samp_cat = typename std::iterator_traits<_SampleIterator>::iterator_category; static_assert( __or_<is_convertible<__pop_cat, forward_iterator_tag>, is_convertible<__samp_cat, random_access_iterator_tag>>::value, "output range must use a RandomAccessIterator when input range" " does not meet the ForwardIterator requirements"); static_assert(is_integral<_Distance>::value, "sample size must be an integer type"); typename iterator_traits<_PopulationIterator>::difference_type __d = __n; return _GLIBCXX_STD_A:: __sample(__first, __last, __pop_cat{}, __out, __samp_cat{}, __d, std::forward<_UniformRandomBitGenerator>(__g)); } #endif // C++17 #endif // C++14 _GLIBCXX_END_NAMESPACE_ALGO _GLIBCXX_END_NAMESPACE_VERSION } // namespace std #endif /* _STL_ALGO_H */
Close