Linux ip-172-26-2-223 5.4.0-1018-aws #18-Ubuntu SMP Wed Jun 24 01:15:00 UTC 2020 x86_64
Apache
: 172.26.2.223 | : 18.219.68.172
Cant Read [ /etc/named.conf ]
8.1.13
www
www.github.com/MadExploits
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
UNLOCK SHELL
HASH IDENTIFIER
CPANEL RESET
CREATE WP USER
BLACK DEFEND!
README
+ Create Folder
+ Create File
/
usr /
lib /
ruby /
2.7.0 /
bigdecimal /
[ HOME SHELL ]
Name
Size
Permission
Action
jacobian.rb
2.09
KB
-rw-r--r--
ludcmp.rb
2.13
KB
-rw-r--r--
math.rb
5.65
KB
-rw-r--r--
newton.rb
1.84
KB
-rw-r--r--
util.rb
2.93
KB
-rw-r--r--
Delete
Unzip
Zip
${this.title}
Close
Code Editor : newton.rb
# frozen_string_literal: false require "bigdecimal/ludcmp" require "bigdecimal/jacobian" # # newton.rb # # Solves the nonlinear algebraic equation system f = 0 by Newton's method. # This program is not dependent on BigDecimal. # # To call: # n = nlsolve(f,x) # where n is the number of iterations required, # x is the initial value vector # f is an Object which is used to compute the values of the equations to be solved. # It must provide the following methods: # # f.values(x):: returns the values of all functions at x # # f.zero:: returns 0.0 # f.one:: returns 1.0 # f.two:: returns 2.0 # f.ten:: returns 10.0 # # f.eps:: returns the convergence criterion (epsilon value) used to determine whether two values are considered equal. If |a-b| < epsilon, the two values are considered equal. # # On exit, x is the solution vector. # module Newton include LUSolve include Jacobian module_function def norm(fv,zero=0.0) # :nodoc: s = zero n = fv.size for i in 0...n do s += fv[i]*fv[i] end s end # See also Newton def nlsolve(f,x) nRetry = 0 n = x.size f0 = f.values(x) zero = f.zero one = f.one two = f.two p5 = one/two d = norm(f0,zero) minfact = f.ten*f.ten*f.ten minfact = one/minfact e = f.eps while d >= e do nRetry += 1 # Not yet converged. => Compute Jacobian matrix dfdx = jacobian(f,f0,x) # Solve dfdx*dx = -f0 to estimate dx dx = lusolve(dfdx,f0,ludecomp(dfdx,n,zero,one),zero) fact = two xs = x.dup begin fact *= p5 if fact < minfact then raise "Failed to reduce function values." end for i in 0...n do x[i] = xs[i] - dx[i]*fact end f0 = f.values(x) dn = norm(f0,zero) end while(dn>=d) d = dn end nRetry end end
Close